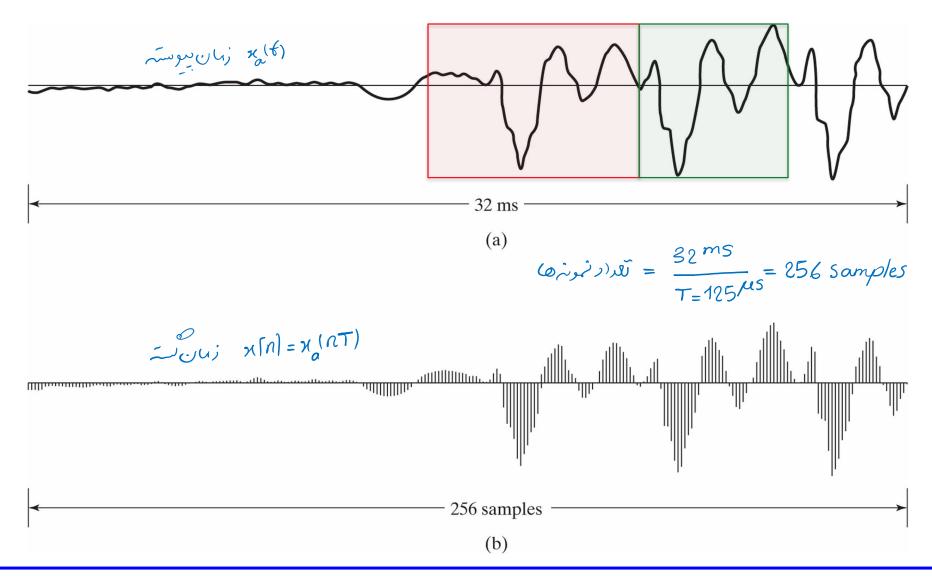


Figure 2.2 (a) Segment of a continuous-time speech signal $x_a(t)$. (b) Sequence of samples $x[n] = x_a(nT)$ obtained from the signal in part (a) with $T = 125 \ \mu$ s.



Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim • Ronald W. Schafer

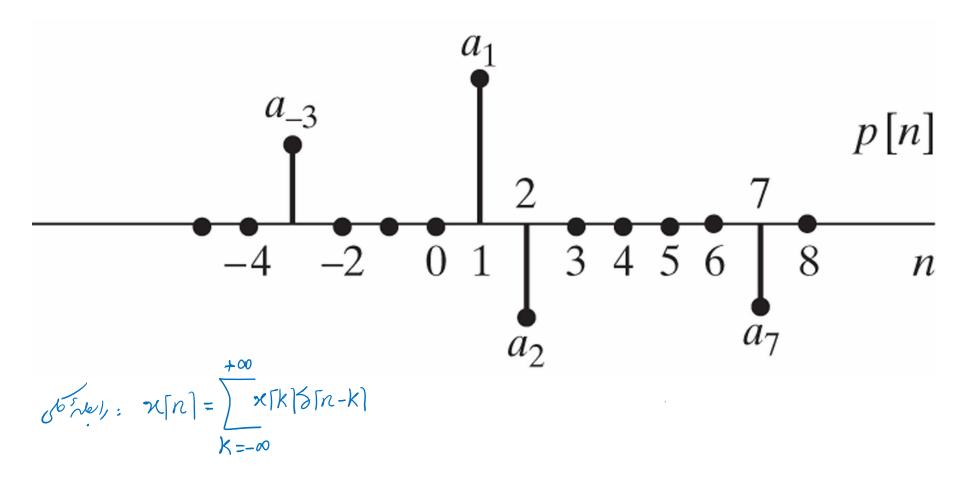
، : n= ، () = () : n= ، فرب واحد . . n= ، Unit sample $\delta[n] = U[n] - U[n-1]$ n (a) Unit step 21, rep 0[n]= {1; repo u[n]= 5[k] 0 n $U[n] = \int_{-\infty}^{\infty} \delta[n-k]$ (b) vir di ,: x[n]= Adn A, P Tains Real exponential نزدی: ۲۷۱۱ ۰ -) < < < . : تسویلی است : -) < < <) 0 n (c) Peuroli > Leira, A Sinusoidal $\sum_{n=1}^{n} \sum_{n=1}^{\infty} A \alpha^{n} = |A| e^{\partial \varphi} |\alpha|^{n} e^{j\omega n}$ $= |A| |\alpha|^{n} e^{j(\omega_{n} + \varphi)}$ $= |A| |\alpha|^{n} \infty s(\omega_{n} + \varphi) + j |A| |\alpha|^{n} sin(\omega_{n} + \varphi)$... (d)

Figure 2.3 Some basic sequences. The sequences shown play important roles in the analysis and representation of discrete-time signals and systems.

Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim • Ronald W. Schafer

Figure 2.4 Example of a sequence to be represented as a sum of scaled, delayed impulses.

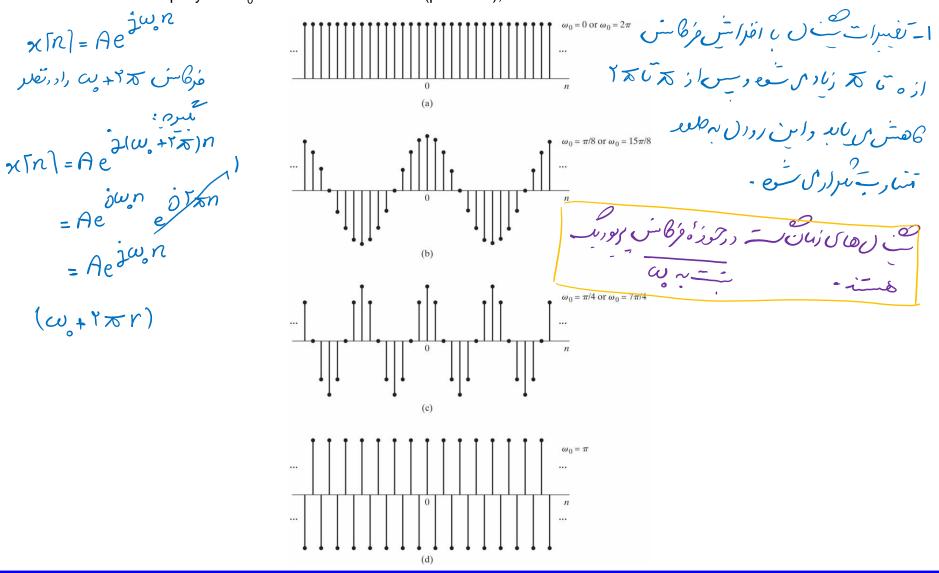
$$p[n] = a_{3}\delta[n+3] + a_{1}\delta[n-1] + a_{2}\delta[n-2] + a_{7}\delta[n-7]$$

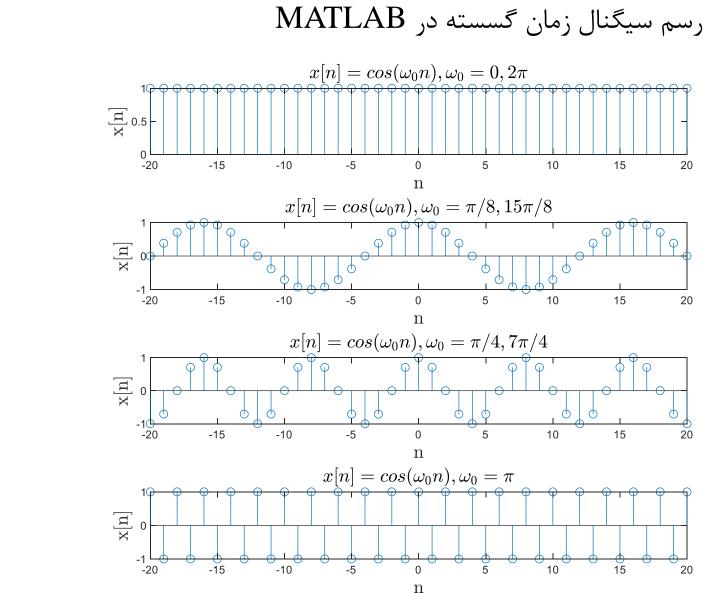


Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim • Ronald W. Schafer

تفارت های شن های برای محمد (از جمله سوی) رجمالت زمان سوسته و گسته:

Figure 2.5 $\cos \omega_0 n$ for several different values of ω_0 . As ω_0 increases from zero toward π (parts a-d), the sequence oscillates more rapidly. As ω_0 increases from π to 2π (parts d-a), the oscillations become slower.





n=-20:20; x=cos(pi/8*n); stem(n,x)

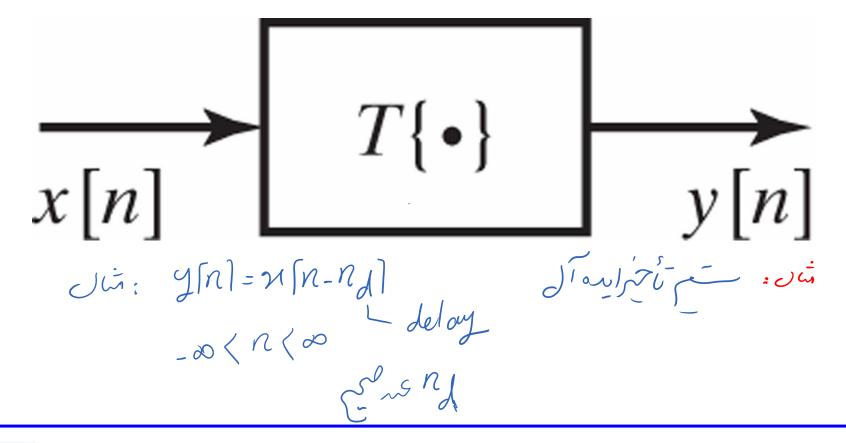
PEARSON

Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim • Ronald W. Schafer

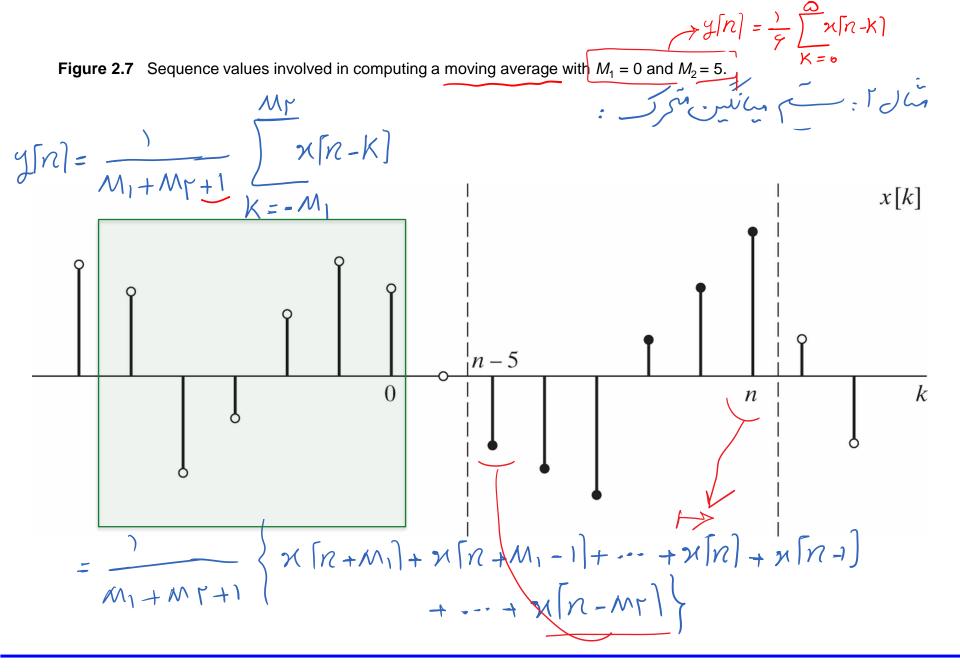
Figure 2.6 Representation of a discrete-time system, i.e., a transformation that maps an input sequence x[n] into a unique output sequence y[n].

 $y[n] = T\{x[n]\}$

۲ ۔ تم های زمان تر



Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim • Ronald W. Schafer



$$e^{\frac{i}{2}\sqrt{n}} \partial \partial i^{n} \partial j = i$$

$$e^{\frac{i}{2}\sqrt{n}} \partial \partial j = n$$

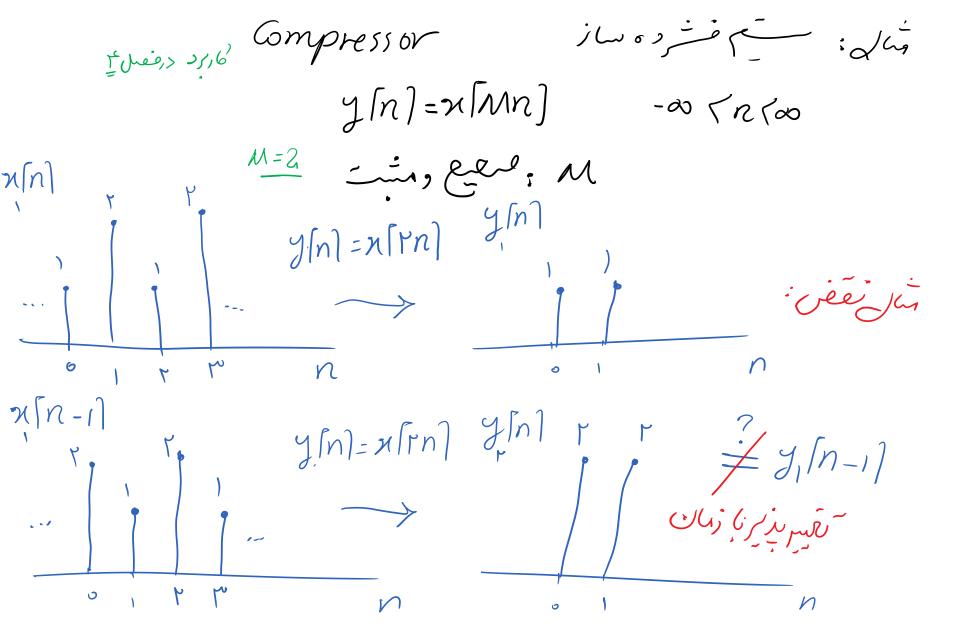
$$f(n) = n$$

 \sim

$$\begin{aligned} & Accumulator & filting :: divides \\ & y[n] = \int_{n}^{n} u[k] & 9.62 \\ & K = -\infty \\ \\ & \sum_{k=-\infty}^{n} (a u, k] + b ur(k]) = a \int_{n}^{n} u(k] + b \int_{n}^{n} u(k] \\ & K = -\infty \\ & K = -\infty \\ & \frac{K = -\infty}{y_1[n]} & \frac{K = -\infty}{y_1[n]} \\ & = a y[n] + b y_1[n] \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & &$$

, 5

$$(time - Invariant)(TI) \quad (Ui) \quad (Ji) \quad (Ii) \quad (Iii) \quad (Iii)$$



Causality : crearde - 1-1 - سی مربر این واب شرایت : غیر بیش او $y[n] = \chi[n-\eta_{n-1}]$ $(\chi_{n-1}) = \chi_{n-1}$ $(\chi_{n-1}) = \chi_{n-1}$ $(\chi_{n-1}) = \chi_{n-1}$ $\mathcal{N} = \frac{1}{2} \cdot \frac{1}{2}$ • کړم : غيرعلي Moving Average: Joi juice y[1] = x[r] -M, > 0 , Mr > 0 : رقم 0.W. : مرجانی : عترعل $\frac{1}{M_1 + M_{\Gamma} + 1} \sum_{K = -M_1} \frac{1}{K} \left[\frac{1}{K_1 - K_1} \right]$

Stabilit

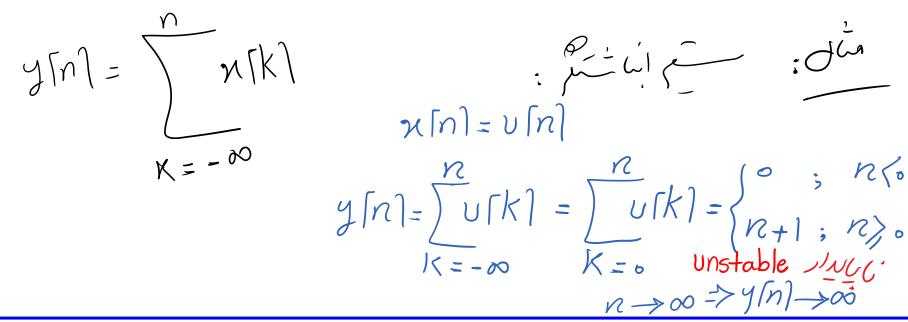
n

n

_ @_1

BIBO ورورک کمدورد . خرج کمع $\chi[n]$

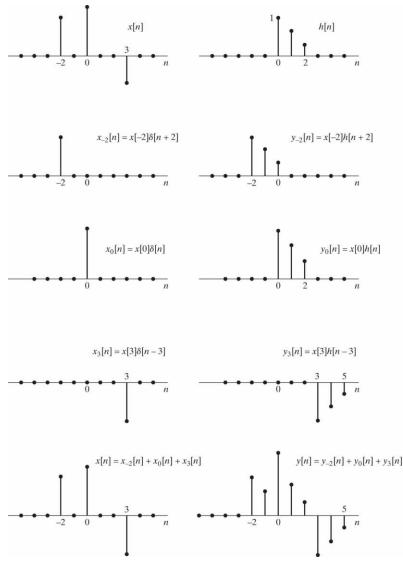
 $|x[n]| \leq B_{\chi} < \infty$ 1ymil < By < 00



Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim • Ronald W. Schafer

$$T_{inear} = \frac{1}{\sum_{k=-\infty}^{\infty} \frac{1}{\sum_{k=-\infty}^{\infty$$

Figure 2.8 Representation of the output of an LTI system as the superposition of responses to individual samples of the input.



Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim • Ronald W. Schafer

Figure 2.9 Forming the sequence h[n - k]. (a) The sequence h[k] as a function of k. (b) The sequence h[-k] as a function of k. (c) The sequence h[n - k] = h[- (k - n)] as a function of k for n = 4.

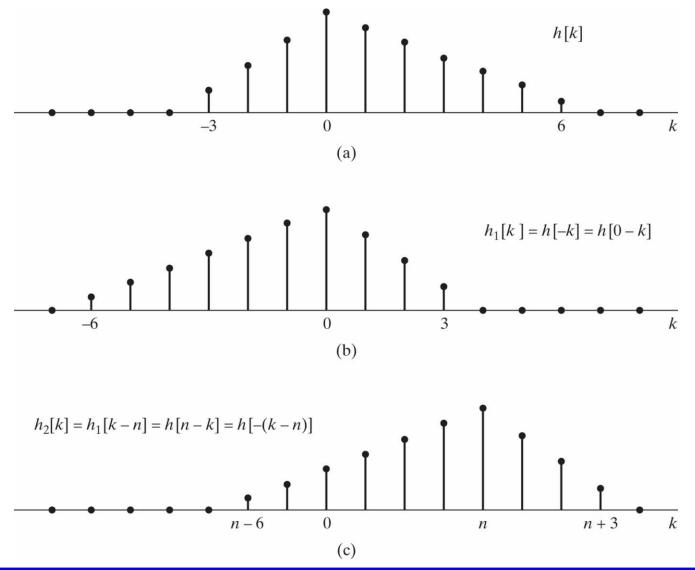
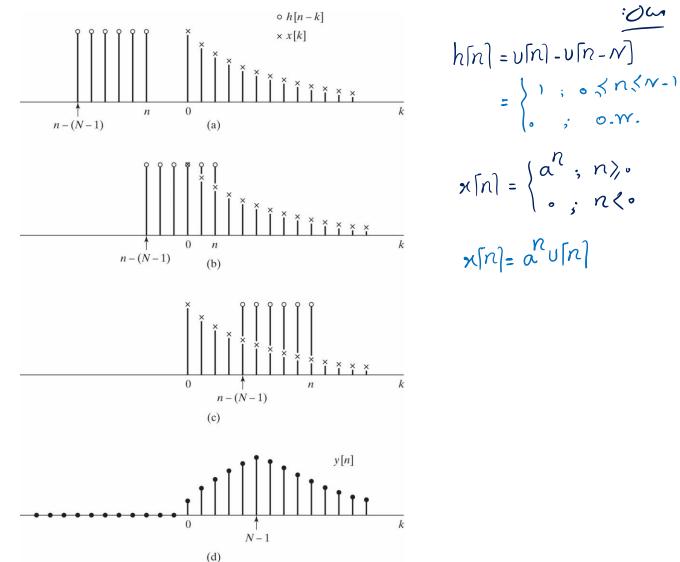
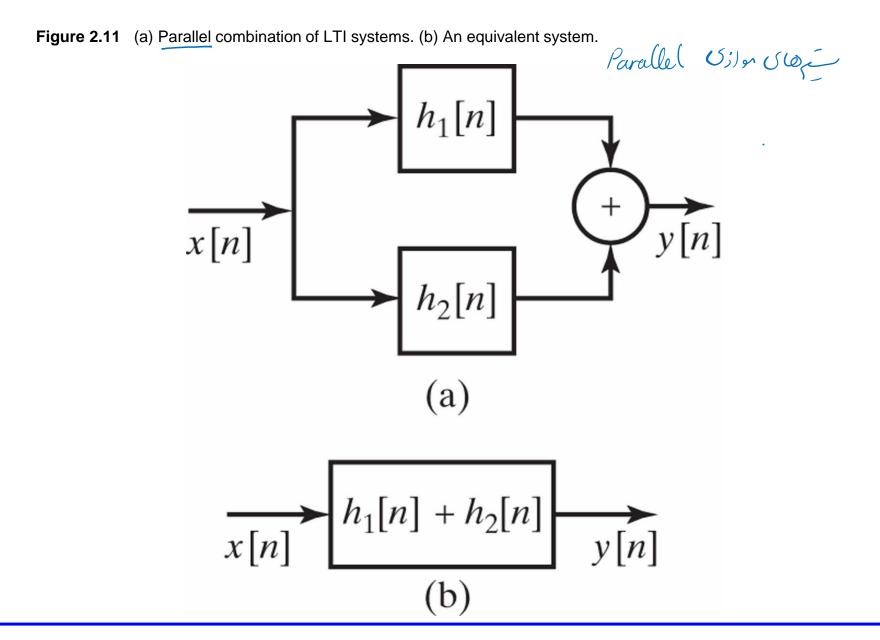


Figure 2.10 Sequence involved in computing a discrete convolution. (a)–(c) The sequences x[k] and h[n-k] as a function of *k* for different values of *n*. (Only nonzero samples are shown.) (d) Corresponding output sequence as a function of *n*.



Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim • Ronald W. Schafer

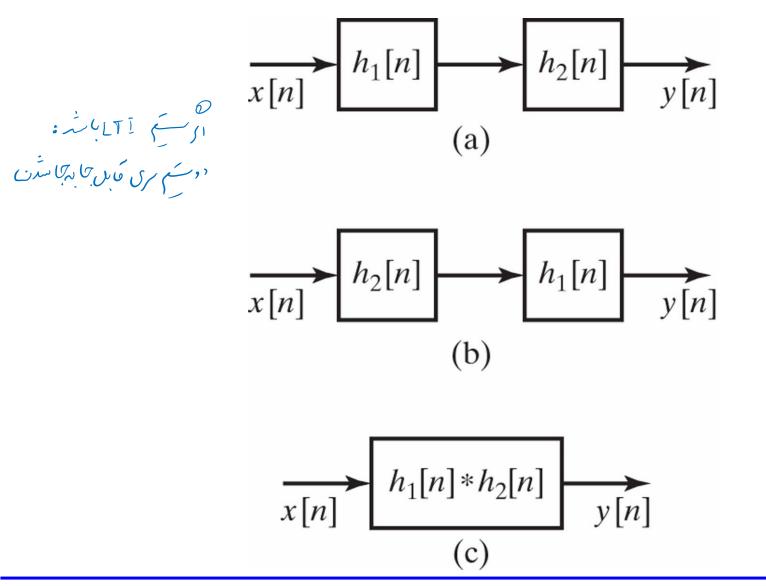
$$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{$$



PEARSON

cascade or . Unit user

Figure 2.12 (a) Cascade combination of two LTI systems. (b) Equivalent cascade. (c) Single equivalent system.



بى رى تى زى رام ، ت ، دى ،

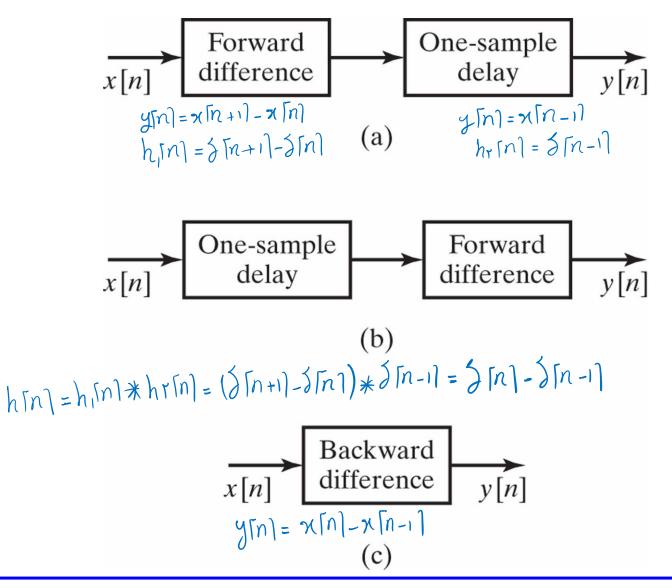
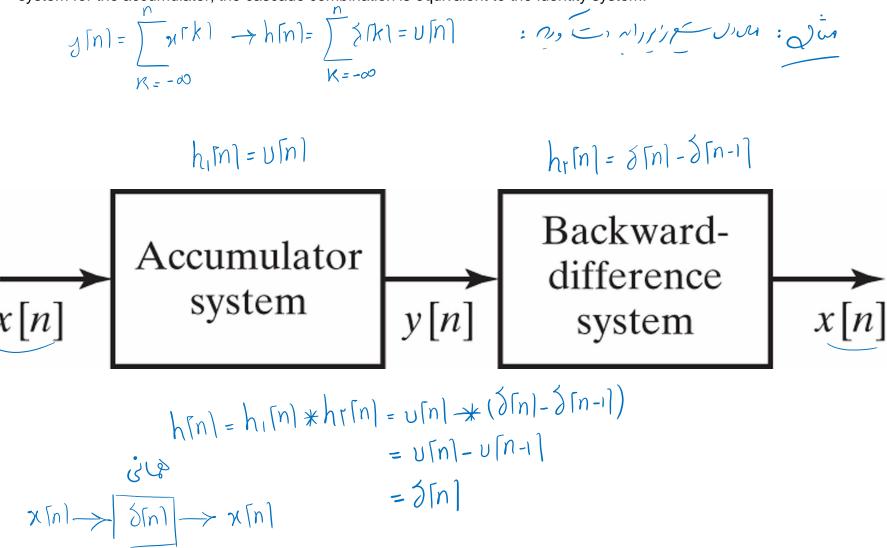
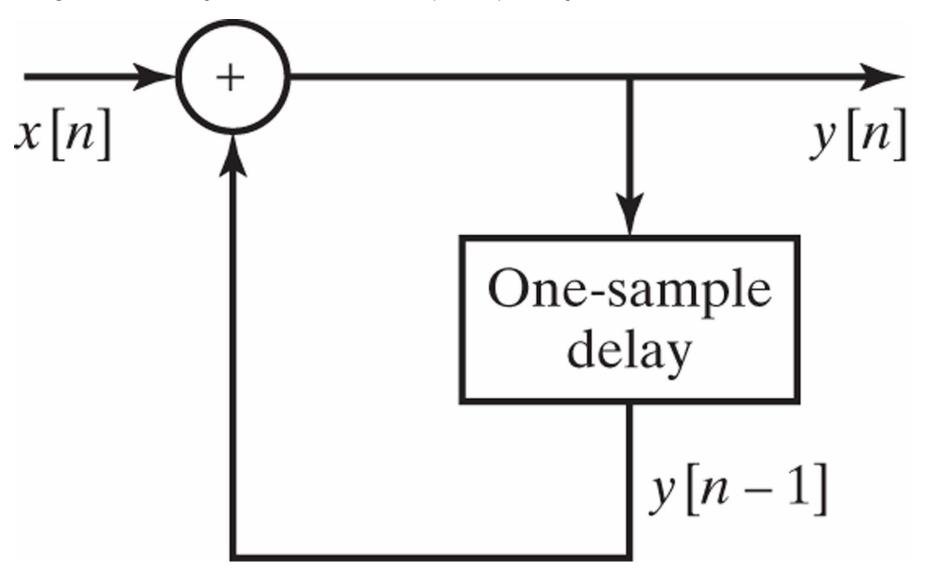


Figure 2.14 An accumulator in cascade with a backward difference. Since the backward difference is the inverse system for the accumulator, the cascade combination is equivalent to the identity system.



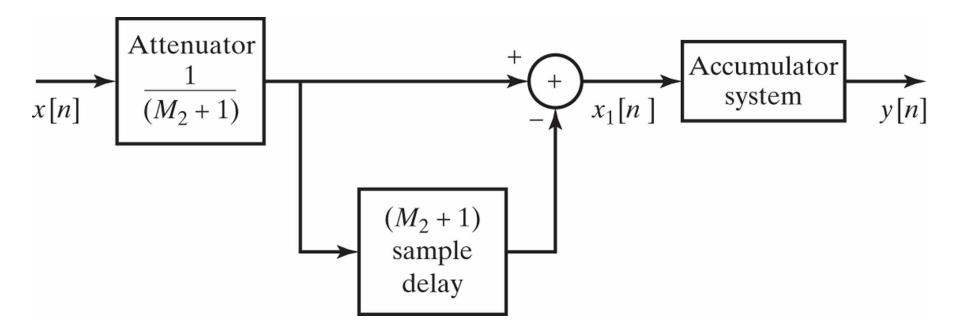
۵ - معدلات تعاضلی خل با هنرایب تابت : (LCCDE)

Figure 2.15 Block diagram of a recursive difference equation representing an accumulator.



Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim • Ronald W. Schafer

Figure 2.16 Block diagram of the recursive form of a moving-average system.



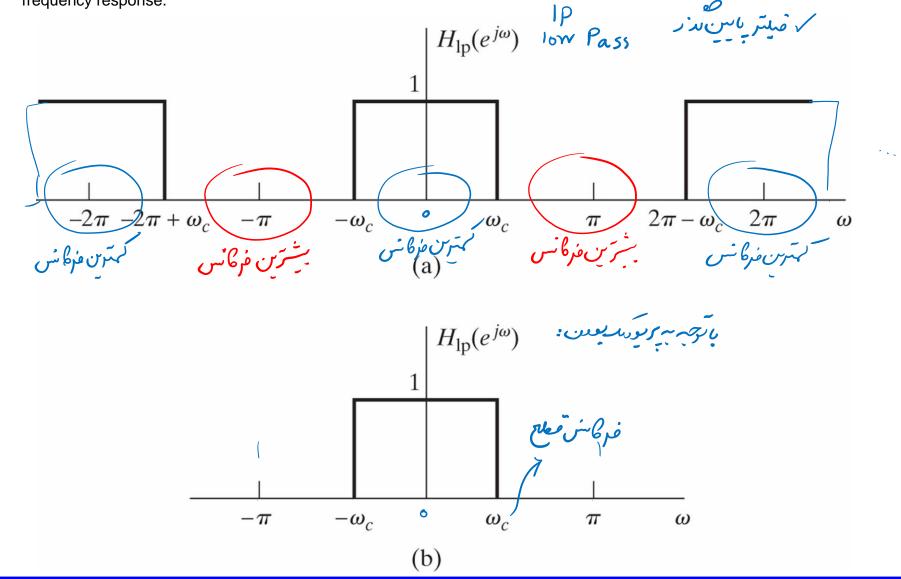
$$\frac{\pi i \int \dot{\xi}_{k}}{i h \dot{\xi}_{k}} = \frac{1}{2} \cdot \frac{\pi}{2} \cdot$$

$$\begin{split} & \pi[n] = \mathcal{A}(\omega)(\omega, n + \varphi) = \frac{\mathcal{A}}{\mathcal{A}} e^{j\varphi} e^{j\omega,n} + \frac{\mathcal{A}}{\mathcal{A}} e^{j\varphi} e^{-j\omega,n} \cdot LTI \xrightarrow{\sim} \mathcal{O}(\omega, n + \varphi) = \frac{\mathcal{A}}{\mathcal{O}}(\omega, n + \varphi) = \frac{\mathcal{A}}{\mathcal{A}} e^{j\varphi} e^{j\omega,n} + \frac{\mathcal{A}}{\mathcal{A}} e^{j\varphi} e^{j\omega,n} \xrightarrow{\sim} \mathcal{I}_{r}[n] = \mathcal{H}(e^{j\omega,n}) \xrightarrow{\mathcal{A}}{\mathcal{A}} e^{j\varphi} e^{j\varphi,n} = \frac{\mathcal{I}}{\mathcal{A}} e^{-j\varphi,n} = \frac{\mathcal{I}}{\mathcal{I}} e^{-j\varphi,n} =$$

 $H(e^{j\omega}) \longrightarrow H(e^{j(\omega+l^{\pi})} = \int_{-\infty}^{\infty} h[n] e^{j(\omega+l^{\pi})}$ $= \int_{-\infty}^{+\infty} h(n) e^{j\omega n} = H(e^{j\omega}) \sqrt{-i\omega y}$ -JTXN $n = -\infty$ نمایش باخ فنطنی (wi یا ترجم بر بردون بودن آن یک تون شها باز، هم کار می که د جری کار می از می از می بازی بر بردون از یک تون شها باز، هم کار می کار از دای ما م هال مسعادن . 10/15

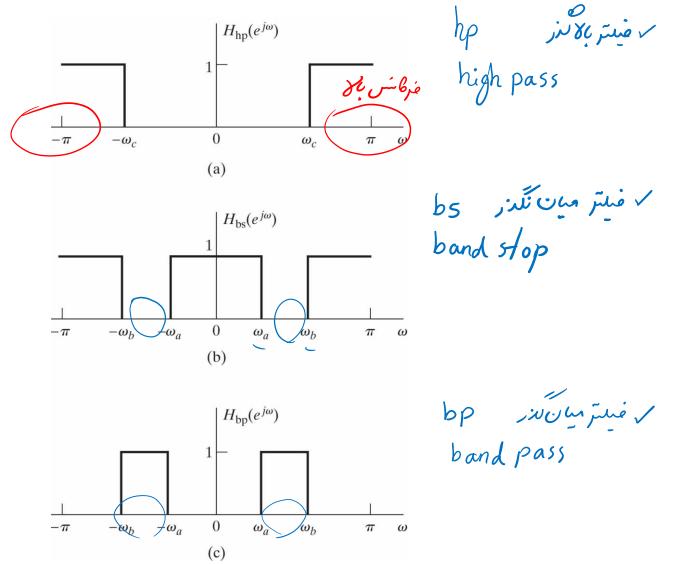
ايده،ك

Figure 2.17 <u>Ideal lowpass filter showing (a) periodicity of the frequency response and (b) one period of the periodic frequency response.</u>



Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim • Ronald W. Schafer

Figure 2.18 Ideal frequency-selective filters. (a) Highpass filter. (b) Bandstop filter. (c) Bandpass filter. In each case, the frequency response is periodic with period 2π . Only one period is shown.



Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim • Ronald W. Schafer

Alan V. Oppenheim • Ronald W. Schafer

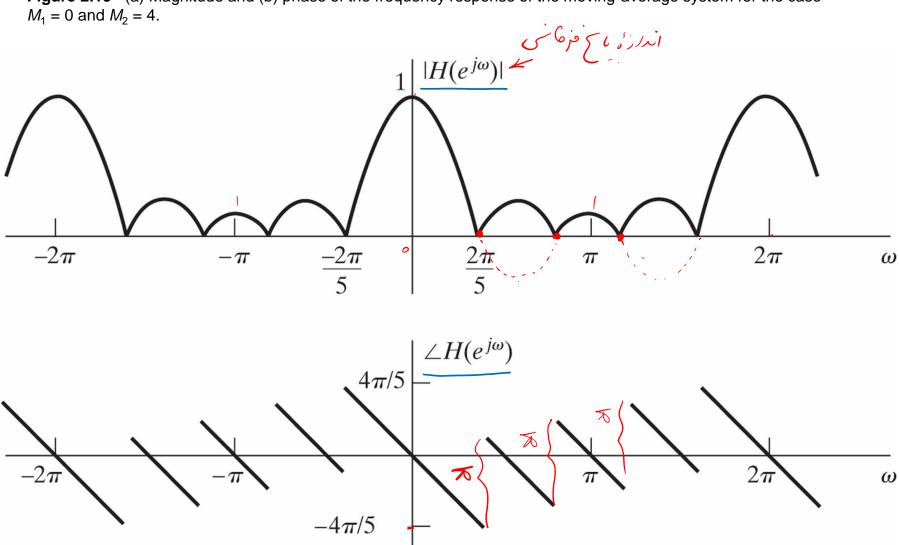
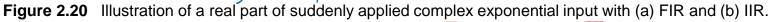
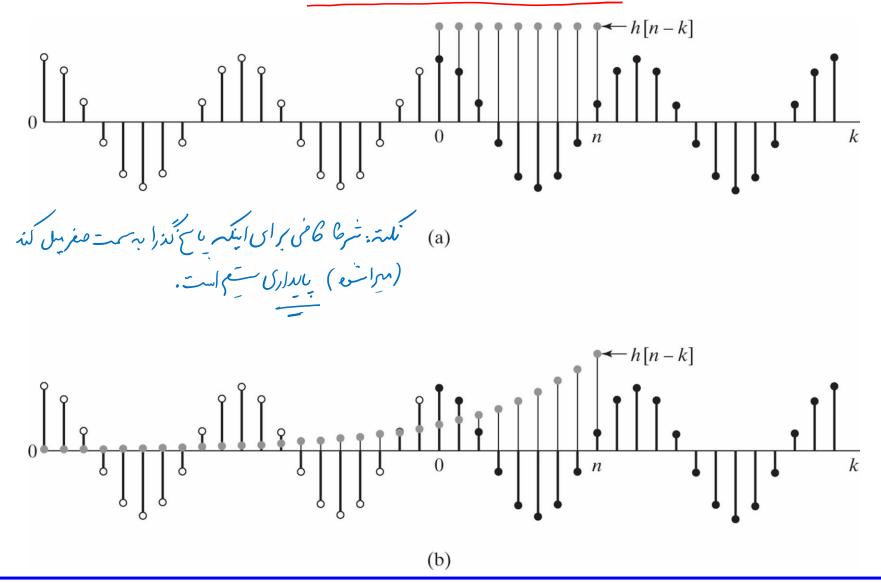


Figure 2.19 (a) Magnitude and (b) phase of the frequency response of the moving-average system for the case

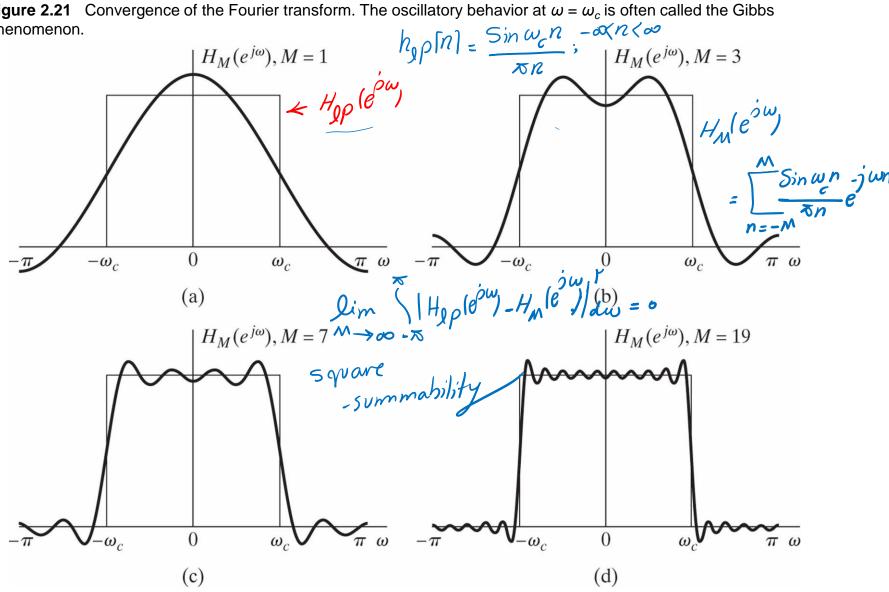
Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim • Ronald W. Schafer

+ransient 1, is in the in the in the steady state in the steady st

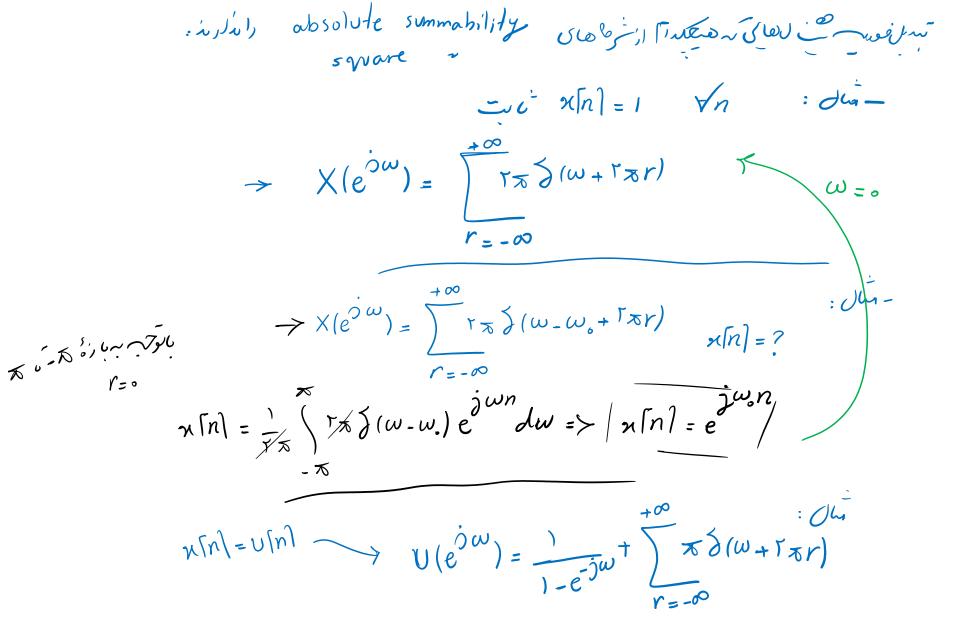




Convergence of the Fourier transform. The oscillatory behavior at $\omega = \omega_c$ is often called the Gibbs Figure 2.21 phenomenon.



Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim • Ronald W. Schafer

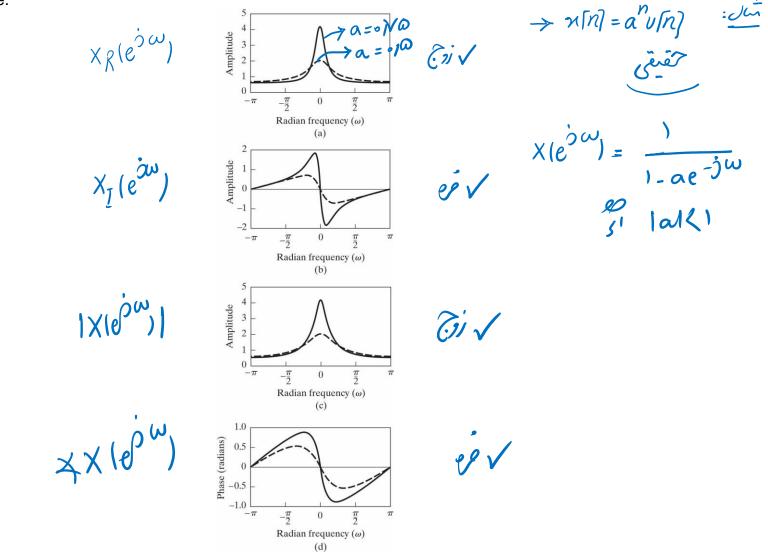


Sequence $x[n]$	OURIER TRANSFORM OURIER TRANSFORM $X_0(e^{j\omega}) = \frac{1}{7} \left[X(e^{j\omega}) - X^*(e^{j\omega}) \right]$ Fourier Transform $X(e^{j\omega})$
1. $x^*[n]$	$X^*(e^{-j\omega})$
2. $x^*[-n]$	$X^*(e^{j\omega})$
3. $\mathcal{R}e\{x[n]\}$	$X_e(e^{j\omega})$ (conjugate-symmetric part of $X(e^{j\omega})$)
4. $j\mathcal{I}m\{x[n]\}$	$X_o(e^{j\omega})$ (conjugate-antisymmetric part of $X(e^{j\omega})$)
5. $x_e[n]$ (conjugate-symmetric part of $x[n]$)	$X_{R}(e^{j\omega}) = \mathcal{R}e\{X(e^{j\omega})\}$
6. $x_o[n]$ (conjugate-antisymmetric part of $x[n]$)	$jX_I(e^{j\omega}) = j\mathcal{I}m\{X(e^{j\omega})\}$
The following p	roperties apply only when x[n] is real:
	• $X(e^{j\omega}) = X^*(e^{-j\omega})$ (Fourier transform is conjugate symmetric)
8. Any real $x[n]$	$X_{R}(e^{j\omega}) = X_{R}(e^{-j\omega}) (\text{real part is even})$ $X_{I}(e^{j\omega}) = -X_{I}(e^{-j\omega}) (\text{imaginary part is odd})$ $ X(e^{j\omega}) = X(e^{-j\omega}) (\text{magnitude is even})$ $\angle X(e^{j\omega}) = -\angle X(e^{-j\omega}) (\text{phase is odd})$
9. Any real $x[n]$	$X_I(e^{j\omega}) = -X_I(e^{-j\omega})$ (imaginary part is odd)
10. Any real $x[n]$	$ X(e^{j\omega}) = X(e^{-j\omega}) $ (magnitude is even)
11. Any real $x[n]$	$\angle X(e^{j\omega}) = -\angle X(e^{-j\omega})$ (phase is odd)
12. $x_e[n]$ (even part of $x[n]$)	$X_R(e^{j\omega})$
13. $x_o[n]$ (odd part of $x[n]$)	$jX_I(e^{j\omega})$

 $X_e(e^{j\omega}) = \frac{1}{r} \int X(e^{j\omega}) + X(e^{j\omega})$ Table 2.1 SYMMETRY PROPERTIES OF THE FOURIER TRANSFORM

PEARSON

Figure 2.22 Frequency response for a system with impulse response $h[n] = a^n u[n]$. (a) Real part. a > 0; a = 0.75 (solid curve) and a = 0.5 (dashed curve). (b) Imaginary part. (c) Magnitude. a > 0; a = 0.75 (solid curve) and a = 0.5 (dashed curve). (d) Phase.



ر رواى ماى بىدى فورىد :

Table 2.2 FOURIER TRANSFORM THEOREMS

	Sequence	Fourier Transform	
	x[n]	$X\left(e^{j\omega} ight)$	
	<i>y</i> [<i>n</i>]	$Y(e^{j\omega})$	
خفلی	1. $ax[n] + by[n]$	$aX(e^{j\omega}) + bY(e^{j\omega})$	
انتقال	2. $x[n - n_d]$ (n_d an integer)	$e^{-j\omega n_d}X(e^{j\omega})$	
انتقال خرطاني	2. $x[n - n_d]$ (n_d an integer) 3. $e^{j\omega_0 n} x[n]$	$X(e^{j(\omega-\omega_0)})$	i. * ja
وأررى	4. $x[-n]$	$X (e^{-j\omega})$ $X (e^{-j\omega})$ $X^* (e^{j\omega}) \text{ if } x[n] \text{ real.}$	$(e^{3\omega}) = \chi^{*}(e^{-3\omega})$
شقررط فس		$j\frac{dX\left(e^{j\omega}\right)}{d\omega}$	
<i>0 بۈ</i> لومىش	지수가 제 - 2018년 2019년	$- \mathcal{X}(e^{j\omega})Y(e^{j\omega})$	
	وكوش جرريك 7. x[n]y[n]	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$	
امدى	Parseval's theorem: $F = \infty$ $8. \sum_{n=-\infty}^{\infty} x[n] ^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) ^2 d\omega$ $9. \sum_{n=-\infty}^{\infty} x[n]y^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})Y^*(e^{j\omega})d\omega$	y spectral density ;+ y[n]=n[n]	
را معد ملى تر	9. $\sum_{n=-\infty}^{\infty} x[n]y^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})Y^*(e^{j\omega})dx$	δ. μ.	

TABLE 2.2 FOURIER TRANSFORM THEOREMS

Table 2.3 FOURIER TRANSFORM PAIRS

-
$\boldsymbol{\omega}$
ŵ

TABLE 2.3	FOURIER	TRANSFORM	PAIRS

Sequence	Fourier Transform
1. $\delta[n]$	1
2. $\delta[n - n_0]$	$e^{-j\omega n_0}$
\Rightarrow 3.1 $(-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$
4. $a^n u[n]$ (a < 1)	$\frac{1}{1 - ae^{-j\omega}}$
\rightarrow 5. $u[n]$	$\frac{1}{1 - e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$ $\frac{1}{(1 - ae^{-j\omega})^2}$
6. $(n+1)a^n u[n]$ $(a < 1)$	$\frac{1}{(1-ae^{-j\omega})^2}$
7. $\frac{r^n \sin \omega_p (n+1)}{\sin \omega_p} u[n] (r < 1)$	$\frac{(1 - ae^{-j\omega})^2}{1}$ $\frac{1}{1 - 2r\cos\omega_p e^{-j\omega} + r^2 e^{-j2\omega}}$ $\chi(e^{\partial \omega})$
8. $\frac{\sin \omega_c n}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1, & \omega < \omega_c, \\ 0, & \omega_c < \omega \le \pi \end{cases}$ $\underline{\sin[\omega(M+1)/2]}_{e^{-j\omega M/2}} e^{-j\omega M/2} \qquad \qquad$
$5^{5} h^{0} 0, x[n] = \begin{cases} 1, & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$
\rightarrow 10. $e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$
$\rightarrow 11. \cos(\omega_0 n + \phi)$	$\sum_{k=-\infty}^{\infty} \left[\pi e^{j\phi} \delta(\omega - \omega_0 + 2\pi k) + \pi e^{-j\phi} \delta(\omega + \omega_0 + 2\pi k)\right]$

Discrete-Time Signal Processing, Third Edition Alan V. Oppenheim • Ronald W. Schafer

$$\begin{aligned} &\chi[n] = a^{n} u[n-5] \longrightarrow \chi(e^{jw}) = ? \\ a^{n} u[n] \longrightarrow \frac{1}{1-ae^{-jw}} \\ a^{n-5} u[n-5] \longrightarrow e^{j5w} \frac{1}{1-ae^{-jw}} \\ a^{-5} \frac{n}{u[n-5]} \longrightarrow e^{-j5w} \frac{1}{1-ae^{-jw}} \\ a^{-5} \frac{n}{u[n-5]} \longrightarrow e^{-j5w} \frac{1}{1-ae^{-jw}} \\ a^{-5} u[n-5] \longrightarrow e^{-j5w} \frac{1}{1-ae^{-jw}} \\ a^{-5} u[n-5] \longrightarrow \frac{a^{-5} e^{-j5w}}{1-ae^{-jw}} \end{aligned}$$

يتلحن

$$X(e^{j\omega}) = \frac{1}{(1-\alpha e^{-j\omega})(1-be^{-j\omega})}$$

$$= \frac{a}{(1-\alpha e^{-j\omega})(1-be^{-j\omega})}$$

10 - 5 Discrete time Frandom Signaly نونر

