$$
\begin{aligned}
& x[n] \stackrel{2}{\longleftrightarrow} X(2) \\
& \cdots \operatorname{rin}: x[n]=\frac{1}{\{\pi j} \oint_{c} x(z) z^{n-1} d z \\
& \text { I Jut: run }
\end{aligned}
$$

$$
\begin{aligned}
& x\left(e^{j \omega}\right)=\sum_{n=-\infty}^{+\infty} x[n) e^{-j \omega n} \\
& \begin{array}{l}
\sim \dot{\sim}: x\left(e^{j \omega}\right)=\left.x(2)\right|_{\substack{\alpha=e^{j \omega} \\
\sim 1, \dot{j},!}} \text { fig } 3.1
\end{array} \\
& \underset{ }{z=r e^{j \omega}} \rightarrow x\left(r e^{j \omega}\right)=\sum_{n=-\infty}^{+\infty} x[n]\left(r e^{j \omega}\right)^{-n} \quad \underset{\sim, 0,0, j, j}{z=e^{j}} \text { Fig } 3.1 \\
& =\sum_{n=-\infty}^{+\infty}\left(x[n) r^{-n}\right) e^{-j \omega n}=F\left\{x[n] r^{-n}\right\} \xrightarrow{r=1} F\{x[n]\}
\end{aligned}
$$

(ROC) : Region of Convergence

$$
\begin{aligned}
& |X(z)|<\infty \rightarrow \sum_{n=-\infty}^{+\infty}|x[n]||z|^{-n}<\infty
\end{aligned}
$$

$$
\begin{aligned}
& X(z)=\sum_{n=-\infty}^{+\infty} x[n] z^{-n}=\sum_{n=0}^{+\infty} a^{n} z^{-n}=\sum_{n=0}^{+\infty}\left(a z^{-1}\right)^{n} \\
& \left|a z^{-1}\right|<1 \quad b_{5} \div=\frac{1}{12| \rangle|a|}=\frac{2}{1-a z^{-1}}, \frac{|z|>|a|}{R O G} \\
& x[n]=u[n] \stackrel{Z}{\longrightarrow} x(2)=\frac{1}{1-\mathfrak{Z}^{-1}} ;|2|>1 \\
& |a|<1 \quad x\left(e^{j \omega}\right)=\frac{1}{1-a e^{-j \omega}}: \text {, }
\end{aligned}
$$

Figure 3.1 The unit circle in the complex z-plane.

Figure 3.2 The ROC as a ring in the z-plane. For specific cases, the inner boundary can extend inward to the origin, and the ROC becomes a disc. For other cases, the outer boundary can extend outward to infinity.

Figure 3.3 Pole-zero plot and ROC for Example 3.1.

$$
\begin{aligned}
& v_{-}=\text {quin wi } \quad x[n]=-a^{n} \cup[-n-1] \rightarrow X(Z)=? \quad: \text { dan } \\
& x(z)=\sum_{n=-\infty}^{-1}-a^{n} z^{-n}=-\sum_{n=1}^{\infty} a^{-n} z^{n}=-\sum_{n=1}^{\infty}\left(a^{-1} z\right)^{n}=1-\sum_{n=0}^{\infty}\left(a^{-1} z\right)^{n} \\
& x\left(\dot{e}^{\omega}\right)=\frac{1}{1-a e^{-j \omega}} \\
& \left|a^{-1} z\right|\left\langle 1 \quad 6^{\prime} \quad=1-\frac{1}{1-a^{-1} z}=\frac{1}{1-a z^{-1}}=\frac{z}{2-a}\right. \\
& \text { Fig3.4 } 121<|a| \\
& \text { ROC }
\end{aligned}
$$

Figure 3.4 Pole-zero plot and ROC for Example 3.2.

iv,$=-\omega)^{s} N(\omega)$

$$
\begin{aligned}
& x[n]=\left(\frac{1}{r}\right)^{n} u[n]+\left(-\frac{1}{r}\right)^{n} u(n] \longrightarrow x(z)=\text { ? } \\
& \frac{1}{1-\frac{1}{r} z^{-1}}+\frac{1}{1+\frac{1}{r} z^{-1}}=\frac{r\left(1-\frac{1}{r} z^{-1}\right)}{\left(1-\frac{1}{r} z^{-1}\right)\left(1+\frac{1}{r} z^{-1}\right)} \\
& |z|>\frac{1}{r} \cap \quad|z|>\frac{1}{r} \quad=|2|>\frac{1}{r}: R O C \\
& 2^{r},-\infty ج^{\prime} s,=, 0 \quad x(z)=\frac{r a\left(2-\frac{1}{r}\right)}{\left(2-\frac{1}{r}\right)\left(2+\frac{1}{r}\right)} \\
& x(2) \rightarrow \text { 。 ire } z=0, \frac{1}{1 r} 0 \\
& x(2) \rightarrow \infty \text { wen } 2=\frac{1}{r}, \frac{-1}{r} \times \quad \text { 立 } 3.5 \\
& \text { Pole. Zero Plot }
\end{aligned}
$$

Figure 3.5 Pole-zero plot and ROC for the individual terms and the sum of terms in Examples 3.3 and 3.4 . (a) $1 /\left(1-1 / 2 z^{-1}\right),|z|>1 / 2$. (b) $1 /\left(1+1 / 3 z^{-1}\right),|z|>1 / 3$. (c) $1 /\left(1-1 / 2 z^{-1}\right)+1 /\left(1+1 / 3 z^{-1}\right),|z|>1 / 2$.

$$
\begin{aligned}
& \text { ope, } \omega\left(\omega^{s}\right) \quad x[n]=\left(-\frac{1}{r}\right)^{n} v[n]=-\left(\frac{1}{r}\right)^{n} u[-n-1] \\
& \frac{1}{1+\frac{1}{r} z^{-1}}-\frac{1}{1-\frac{1}{r} z^{-1}}=\frac{r\left(1-\frac{1}{1 r} z^{-1}\right)}{\left(1+\frac{1}{r} z^{-1}\right)\left(1-\frac{1}{r} z^{-1}\right)} \\
& |2|>\frac{1}{r} \cap \quad|2|<\frac{1}{r}=\frac{1}{r}<|2|<\frac{1}{r} \\
& \text { Fig } 3.6
\end{aligned}
$$

Figure 3.6 Pole-zero plot and ROC for Example 3.5.

$$
X(z)=\sum_{n=N_{1}}^{N_{r}} x \sqrt{n} z^{-n}
$$

: evaboćsi) $N_{1} \preccurlyeq n \leqslant N_{\mu}$

$\alpha=\infty, ~ 又=0, ~, \underbrace{\prime}$,

$$
x[n\rceil=\delta|n|+\delta|n-\omega| \quad: \omega_{0}^{\prime}
$$

$$
\begin{aligned}
& x(2)=1+2^{-0} \\
& \text { ROC: }|2|>0 \\
& 2=0 ? \sim \text { into }
\end{aligned}
$$

Figure 3.7 Pole-zero plot for Example 3.6 with $N=16$ and a real such that $0<a<1$. The ROC in this example consists of all values of z except $z=0$.

Table 3.1 SOME COMMON z-TRANSFORM PAIRS

TABLE 3.1 SOME COMMON z-TRANSFORM PAIRS

$$
\begin{aligned}
& \text { Fig } 3.8
\end{aligned}
$$

位 .
 Q Fig 3.8,b $\quad \mathcal{L}=\infty, \dot{\gamma} \dot{\sim}$
 Fig 3.8, c $\quad Z=0, \gamma \dot{\gamma}=1$?
Fig 3.8, d\&e .

Figure 3.8 Examples of four z-transforms with the same pole-zero locations, illustrating the different possibilities for the ROC, each of which corresponds to a different sequence: (b) to a right-sided sequence, (c) to a left-sided sequence, (d) to a two-sided sequence, and (e) to a two-sided sequence.

(a)

(b)

Figure 3.9 Pole-zero plot for the system function in Example 3.8.

Figure 3.10 Pole-zero plot and ROC for Example 3.9.

$$
\begin{aligned}
& \Longrightarrow a^{n} \cup\left[n\left|\stackrel{2}{\longleftrightarrow} \frac{1}{1-a z^{-1}}, \quad\right| 2| \rangle|a|\right. \\
& : 2 \text { pinions } \\
& \text { : Inspection } \\
& \left.x(z)=\frac{1}{1-\frac{1}{r} z^{-1}} ;|z|\right\rangle \frac{1}{r} \longrightarrow x(n)=\left(\frac{1}{r}\right)^{n} \cup(n) \\
& ; 121<\frac{1}{r} \rightarrow x[n]=-\left(\frac{1}{r}\right)^{n} \cup[-n-1]
\end{aligned}
$$

$$
\begin{aligned}
& x(z)=\frac{1}{\left(1-\frac{1}{r} z^{-1}\right)\left(1-\frac{1}{r} i^{-1}\right)} ; \quad|21\rangle \frac{1}{r} \quad: \sin \\
& x(z)=\frac{A_{1}}{1-\frac{1}{r} z^{-1}}+\frac{A_{r}}{1-\frac{1}{r} z^{-1}} \Rightarrow A_{1}=-1, \quad A_{r}=r
\end{aligned}
$$

$$
\begin{aligned}
& X(2)=\frac{1+r Z^{-1}+Z^{-r}}{1-\frac{r}{r} z^{-1}+\frac{1}{r} Z^{-r}} ; \quad|2|>1 \\
& =\frac{\left(1+Z^{-1}\right)^{r}}{\left(1-\frac{1}{r} Z^{-1}\right)\left(1-Z^{-1}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l|l}
\begin{array}{l}
z^{-r}+r z^{-1}+1 \\
z^{r}-r z^{-1}+r
\end{array} & \frac{\frac{1}{r} z^{-r}-\frac{r}{r} z^{-1}+1}{r}
\end{array} \\
& x(z)=r+\frac{\omega z^{-1}-1}{1-\frac{r}{r} z^{-1}+\frac{r}{r} z^{-r}}=r+\frac{A_{1}}{\left(1-\frac{r}{r} z^{-1}\right)}+\frac{A_{r}}{\left(1-z^{-1}\right)}<A_{r}=\Lambda ~ \$ ~ A ~=-9 ~\left(\begin{array}{l}
A_{1}=-1
\end{array}\right. \\
& \rightarrow x[n]=r j[n]-9\left(\frac{1}{r}\right)^{n} u[n]+n u[n] \\
& \text { Fig 3.11 } \\
& \text { ロゴ-1 }
\end{aligned}
$$

Figure 3.11 Pole-zero plot for the z-transform in Example 3.10.

$$
\begin{aligned}
& \text { : } \\
& x(z)=\sum_{n=-\infty}^{+\infty} x[n] z^{-n}=\cdots+\underline{x[-r\rceil Z^{r}}+\underline{x[-1]} \underline{z}+\underline{x[0]}+\underline{x[1] Z^{-1}+x\left[r \mid z^{-r}+\cdots\right.} \\
& X(\mathcal{L})=Z^{r}\left(1-\frac{1}{r} Z^{-1}\right)\left(1+Z^{-1}\right)\left(1-Z^{-1}\right): \text { 年i } \\
& =Z^{r}-\frac{1}{r} 2-1+\frac{1}{r} z^{-1} \\
& x \mid n\rceil=\left\{\begin{array}{ccc}
1 ; & n=-r \\
-\frac{1}{r} ; & n=-1 \\
-1 ; & n=0 \\
\frac{1}{r} ; & n=1 \\
0 ; & 0 . w .
\end{array}\right. \\
& \rightarrow x[n]=\delta\left[n+r \left\lvert\,-\frac{1}{r} \delta(n+1)-\delta(n)+\frac{1}{r} \delta(n-1)\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& x(2)=\sum_{n=1} \frac{(-1)^{n+1} a^{n} z^{-n}}{n} \rightarrow x[n]=\frac{(-1)^{n+1} a^{n}}{n} \cup[n-1)
\end{aligned}
$$

Table 3.2 SOME z-TRANSFORM PROPERTIES

$$
x \mid n+r\rceil \longleftrightarrow 2^{r} \times(z)
$$

TABLE 3.2 SOME z-TRANSFORM PROPERTIES
Property Section
Number Reference

Sequence	Transform
$x[n]$	$X(z)$

$$
\begin{aligned}
& >\frac{d x(z)}{d z}=\frac{-a z^{-r}}{1+a z^{-1}} \\
& 4 \operatorname{lin}_{n}^{2} n x\left[n \left|\stackrel{z}{\longleftrightarrow}-z \frac{d x(z)}{d z}=\frac{a z^{-1}}{1+a z^{-1}},|z 1>|a|\right.\right. \\
& n n[n]=a(-a)^{n-1} v[n-1] \\
& \rightarrow x[n]=(-1)^{n+1} \frac{a^{n}}{n} \cup[n-1] \\
& \text { LTI U U É, I }
\end{aligned}
$$

$$
\begin{aligned}
& \dot{\sim} \dot{0} \\
& \text { : LTI UCof }{ }_{-}^{-} \text {, } 2 \text { M } \tilde{\sim}_{\text {Min, }}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
X(2) \\
\text { system } \\
\text { Function }
\end{array} \rightarrow \underset{\sim H(2)}{ } \rightarrow \\
& H(2)=\frac{1}{1-a z^{-1}} ;|2|>|a| \\
& x(2)=\frac{A}{1-Z^{-1}} ;|z|>1 \\
& \Rightarrow H(2)=\frac{Y(2)}{X(2)} \\
& \left\{\begin{array}{l}
h \mid n\rceil=a^{n} v\lceil n\rceil \\
x \mid n\rceil=A \cup[n\rceil
\end{array}:\left\langle\omega_{i}^{-}\right.\right. \\
& \because 5-3 \dot{z} \quad \underline{|a|<1} \\
& \longrightarrow Y(2)=\frac{A}{\left(1-a 2^{-1}\right)\left(1-2^{-1}\right)}=\frac{A 又^{r}}{(z-a)(z-1)} ;|z|>1 \\
& =\frac{A}{1-a}\left(\frac{1}{1-z^{-1}}-\frac{a}{1-a z^{-1}}\right) \begin{array}{l}
;|2|>1 \\
>y[n]=\frac{A}{1-a}\left(1-a^{n+1}\right) u\lceil n\rceil
\end{array}
\end{aligned}
$$

Figure 3.12 Pole-zero plot for the z-transform of the convolution of the sequences $u[n]$ and $a^{n} u[n]$ (assuming $|a|<1$).

$$
\begin{aligned}
& \sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{N} b_{k} x[n-k] \\
& \Rightarrow \sum_{k=0}^{N} a_{k} z^{-k} Y(z)=\sum_{k=0}^{M} b_{k} z^{-k} x(z) \\
& \Rightarrow H(2)=\frac{Y^{\prime}(z)}{x(z)}=\frac{\sum_{k=0}^{N} b_{k} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}} \\
& y[n]=a y[n-1\rceil+x[n\rceil
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{Z} \leftrightarrows Y(z)=a z^{-1} Y(z)+X(z) \quad H(z), h(n)=? \\
& H(Z)=\frac{1}{1-a z^{-1}} ;|2|>|a| \rightarrow h\left[n \mid=a^{n} u[n]\right.
\end{aligned}
$$

