
Discrete-Time IIR Filter Design from 
Continuous-Time Filters

Quote of the Day

Experience is the name everyone gives to their 
mistakes. 

Oscar Wilde

Content and Figures are from Discrete-Time Signal Processing, 2e by Oppenheim, Shafer, and Buck, ©1999-2000 Prentice Hall 
Inc. 
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Filter Design Techniques

• Any discrete-time system that modifies certain frequencies

• Frequency-selective filters pass only certain frequencies

• Filter Design Steps

– Specification

• Problem or application specific

– Approximation of specification with a discrete-time system

• Our focus is to go from spec to discrete-time system 

– Implementation

• Realization of discrete-time systems depends on target technology

• We already studied the use of discrete-time systems to 
implement a continuous-time system

– If our specifications are given in continuous time we can use 
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Filter Specifications

• Specifications
– Passband

– Stopband

• Parameters

• Specs in dB
– Ideal passband gain =20log(1) = 0 dB

– Max passband gain = 20log(1.01) = 0.086dB

– Max stopband gain = 20log(0.001) = -60 dB
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Butterworth Lowpass Filters

• Passband is designed to be maximally flat

• The magnitude-squared function is of the form
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Chebyshev Filters

• Equiripple in the passband and monotonic in the stopband

• Or equiripple in the stopband and monotonic in the passband

( )
( )

( ) ( )xcosNcosxV       
/V1

1
jH 1

N

c
2
N

2

2

c
−=

+
=



Copyright (C) 2005 Güner Arslan 351M Digital Signal Processing 13

Elliptic Filters
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Filter Design by Impulse Invariance

• Remember impulse invariance

– Mapping a continuous-time impulse response to discrete-time

– Mapping a continuous-time frequency response to discrete-time

• If the continuous-time filter is bandlimited to

• If we start from discrete-time specifications Td cancels out

– Start with discrete-time spec in terms of 

– Go to continuous-time =  /T and design continuous-time filter

– Use impulse invariance to map it back to discrete-time = T 

• Works best for bandlimited filters due to possible aliasing 
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Impulse Invariance of System Functions 

• Develop impulse invariance relation between system functions

• Partial fraction expansion of transfer function

• Corresponding impulse response

• Impulse response of discrete-time filter

• System function

• Pole s=sk in s-domain transform into pole at 
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Example

• Impulse invariance applied to Butterworth

• Since sampling rate Td cancels out we can assume Td=1

• Map spec to continuous time 

• Butterworth filter is monotonic so spec will be satisfied if

• Determine N and c to satisfy these conditions
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Example Cont’d

• Satisfy both constrains

• Solve these equations to get

• N must be an integer so we round it up to meet the spec

• Poles of transfer function 

• The transfer function

• Mapping to z-domain
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Example Cont’d



Bilinear Transformation الگوریتم
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Filter Design by Bilinear Transformation

• Get around the aliasing problem of impulse invariance

• Map the entire s-plane onto the unit-circle in the z-plane
– Nonlinear transformation

– Frequency response subject to warping

• Bilinear transformation

• Transformed system function

• Again Td cancels out so we can ignore it

• We can solve the transformation for z as 

• Maps the left-half s-plane into the inside of the unit-circle in z
– Stable in one domain would stay in the other
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Bilinear Transformation

• On the unit circle the transform becomes

• To derive the relation between  and 

• Which yields
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Bilinear Transformation
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Example

• Bilinear transform applied to Butterworth

• Apply bilinear transformation to specifications

• We can assume Td=1 and apply the specifications to 

• To get
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Example Cont’d

• Solve N and c

• The resulting transfer function has the following poles

• Resulting in

• Applying the bilinear transform yields
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Example Cont’d



7.5مثال 
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Multiband
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Filter Design by Windowing

• Simplest way of designing FIR filters

• Method is all discrete-time no continuous-time involved

• Start with ideal frequency response

• Choose ideal frequency response as desired response

• Most ideal impulse responses are of infinite length

• The easiest way to obtain a causal FIR filter from ideal is

• More generally
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Windowing in Frequency Domain

• Windowed frequency response

• The windowed version is smeared version of desired response

• If w[n]=1 for all n, then W(ej) is pulse train with 2 period
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Properties of Windows

• Prefer windows that concentrate around DC in frequency

– Less smearing, closer approximation

• Prefer window that has minimal span in time 

– Less coefficient in designed filter, computationally efficient

• So we want concentration in time and in frequency

– Contradictory requirements

• Example: Rectangular window

• Demo
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http://www.jhu.edu/~signals/fourier2/index.html
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Rectangular Window
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• Narrowest main lob

– 4/(M+1)

– Sharpest transitions at 
discontinuities in 
frequency

• Large side lobs

– -13 dB

– Large oscillation 
around discontinuities

• Simplest window 
possible
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Bartlett (Triangular) Window
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• Medium main lob

– 8/M

• Side lobs

– -25 dB

• Hamming window 
performs better

• Simple equation



Copyright (C) 2005 Güner Arslan 351M Digital Signal Processing 50

Hanning Window
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• Medium main lob

– 8/M

• Side lobs

– -31 dB

• Hamming window 
performs better

• Same complexity as 
Hamming
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Hamming Window
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• Medium main lob

– 8/M

• Good side lobs

– -41 dB

• Simpler than Blackman
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Blackman Window
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• Large main lob

– 12/M

• Very good side lobs

– -57 dB

• Complex equation

• Windows Demo

http://www.see.ed.ac.uk/~mjj/dspDemos/EE4/tutWindow.html
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Incorporation of Generalized Linear Phase

• Windows are designed with linear phase in mind

– Symmetric around M/2

• So their Fourier transform are of the form

• Will keep symmetry properties of the desired impulse response

• Assume symmetric desired response

• With symmetric window

– Periodic convolution of real functions
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Linear-Phase Lowpass filter

• Desired frequency response

• Corresponding impulse 
response

• Desired response is even 
symmetric, use symmetric 
window
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Kaiser Window Filter Design Method

• Parameterized equation 
forming a set of windows

– Parameter to change main-
lob width and side-lob area 
trade-off

– I0(.) represents zeroth-order 
modified Bessel function of 
1st kind
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Determining Kaiser Window Parameters

• Given filter specifications Kaiser developed empirical equations

– Given the peak approximation error  or in dB as A=-20log10 

– and transition band width 

• The shape parameter  should be

• The filter order M is determined approximately by  
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Example: Kaiser Window Design of a Lowpass Filter

• Specifications

• Window design methods assume

• Determine cut-off frequency

– Due to the symmetry we can choose it to be  

• Compute 

• And Kaiser window parameters

• Then the impulse response is given as
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Example Cont’d

Approximation Error
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General Frequency Selective Filters

• A general multiband impulse response can be written as

• Window methods can be applied to multiband filters

• Example multiband frequency response

– Special cases of

• Bandpass

• Highpass

• Bandstop 
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Parks-McClellan
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