CLUSTERING <57 1 s
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* Basic Concepts <o ew U0

In clustering or unsupervised learning no training data,
with class labeling, are available. The goal becomes:
Group the data into a number of sensible clusters
(groups). This unravels similarities and differences among
the available data.

> Applications:
e Engineering
e Bioinformatics
e Social Sciences
e Medicine
e Data and Web Mining

> To perform clustering of a data set, a clustering
criterion must first be adopted. Different clustering
criteria lead, in general, to different clusters. i




> A simple

1. Two clusters

2. Clustering criterion:
How mammals bear
= their progeny
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Lizard, sparrow,
viper, seaqull, gold

fish, frog, red
mullet

Blue shark,
sheep, cat,

dog

Sheep, sparrow,
dog, cat, seaqull,
lizard, frog, viper

1. Two clusters
2. Clustering criterion:
Existence of lungs

o 7

Gold fish, red
mullet, blue
shark
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% Clustering task stages

> Feature Selection: Information rich features-Parsimony

» Proximity Measure: This quantifies the term similar or
dissimilar.

» Clustering Criterion: This consists of a cost function or
some type of rules.

» Clustering Algorithm:  This consists of the set of
steps followed to reveal the structure, based on the
similarity measure and the adopted criterion.

> Validation of the results.
» Interpretation of the results.



» Depending on the similarity measure, the clustering
criterion and the clustering algorithm different clusters
may result. Subjectivity is a reality to live with from
now on.

> A simple example: How many clusters??

20r4??



% Basic application areas for clustering o2 /GO@{M/

» Data reduction. All data vectors within a cluster are
substituted (represented) by the corresponding cluster

representative. (205); 06" -
> Hypothesis generation. Do udy -
» Hypothesis testing. . D> L~
> Prediction based on groups. @J/Ju S -
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% Clustering Definitions
, - » Hard Clustering: Each point belongs to a single cluster
e o Let X :Q(l’)_(Z""’)_(N}

e An m-clustering R of X, is defined as the
partition of X into m sets (clusters), C,, 4 m=3

C,,...,C,, so that o
L OGS eslr N[0 1)

T Gl WP = B8 ity =180 ki

In addition, data in C; are more similar to each
other and less similar to the data in the rest of the
clusters. Quantifying the terms similar-dissimilar
depends on the types of clusters that are expected
to underlie the structure of X.



» Fuzzy clustering: Each point belongs to all clusters up
to some degree.

A fuzzy clustering of X into m clusters is characterized
by m functions

e uU;:x—>[01], J=12,...,.m
. Z;ujo_(i):l, i=12,.. N
)=

N
O U X RN = 2
=1



These are known as membership functions.
Thus, each x; belongs to any cluster “up to
some degree”, depending on the value of

u (x;), j=12,.,m

u;(x;) close to 1= high grade of

membershipof x. to cluster j.
u;(x;)close to 0=

low grade of membership.




TYPES OF FEATURES

s With respect to their domain
» Continuous (the domain is a continuous subset of R).

» Discrete (the domain is a finite discrete set).
e Binary or dichotomous (the domain consists of two possible values).

% With respect to the relative significance of the values they
take
» Nominal (the values code states, e.g., the sex of an individual).

» Ordinal (the values are meaningfully ordered, e.g., the rating of the
services of a hotel (poor, good, very good, excellent)).

> Interval-scaled (the difference of two values is meaningful but their
ratio is meaningless, e.g., temperature).

> Ratio-scaled (the ratio of two values is meaningful, e.g., weight).
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PROXIMITY MEASURES

% Between vectors

»Dissimilarity measure (between vectors of X) is a
function

d e =)

with the following properties
. dd,eN: —0o<d, <d(x,y)<+40, Vx,ye X

e d(x,x)=d,, Vxe X
*d(x,y)=d(y,x), Vx,ye X
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If in addition

* d(x,y)=d, if and onlyif x=y
» d(x,2)<d(x,y)+d(y,2), Vx,y,z€ X

(triangular inequality)

d is called a metric dissimilarity measure.
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» Similarity measure (between vectors of X) is a
function

SEAA S O

with the following properties

dsy €R: —0<s(x,y) <5, <+, Vx,yeX

e S(x,x)=s5,, Vxe X

es(x,y)=5(1,%), Vx,ye X
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If in addition

o S(x,y)=s5,if and onlyif x=y

o S Y)s(y,2) S[s(x, y)+5(y,2)]s(x,2), VX, y,z€ X

S is called a metric similarity measure.

e Between sets
Let D;c X, i=1,....k and U={D,,...,D, }
A proximity measure g on U is a function
. UxU—>R

A dissimilarity measure has to satisfy the relations of
dissimilarity measure between vectors, where D; s are used
in place of x, y (similarly for similarity measures).
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PROXIMITY MEASURES BETWEEN VECTORS

% Real-valued vectors
> Dissimilarity measures (DMs)

o Weighted |, metric DMs

[
dp()_ca)_/)z(zwl_ |xi —y, |p)1/p
i=1

Interesting instances are obtained for
— p=1 (weighted Manhattan norm)

— P=2 (weighted Euclidean norm)
— Pp=co (d ,(X,Y)=MaX, i W;|X;-Yi| )

: T — ALY =7
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o Other measures

X -y
- d-(x,y)=-log,|1—- L
¢(x%,)) glo[ ZZ T ]

where b; and a; are the maximum and the minimum
values of the j-th feature, among the vectors of X
(dependence on the current data set)

)= }Z{xj_ij

s S s R
b=[10,12,13]" R Oy
o 20 0.5, 40"

Ae’: o/oYQQ

O((R = 0/<7)_‘@®
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» Similarity measures

o Inner product

[
Sinner ()_Ca y) ™ )_CTX — Z’xiyi

e Janimoto measure

(x,7) Xy

ST )_Cay i =

X TPy -y
d,(x,

® ST()_C,J_/)zl— (X )_/)

Ixll =+

17



% Discrete-valued vectors
> Let F={0,1,... k-1} be a set of symbols and X={x,,....xy} < F'

> Let A(x,y)=[a;], i, j=0,1,... k-1, where a; is the number of places where
x has the i-th symbol and y has the j-th symbol.
k-1 k-1
=l

NOTE: L

7

Several proximity measures can be expressed as combinations of the
elements of A(x,y).

» Dissimilarity measures:

e The Hamming distance (number of places where x and y differ)
k=1 k-1

dy(x,0)=2.) .4

i=0 j=0
i

e The |, distance !
dl(%l) = Z| X — Vi |
=L
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» Similarity measures:

k-1
aii
- : ¥, =1
e Tanimoto measure : s, (x, y)= e
nx i I”ly T Cll]
=l =]
gl k=1 k-1
where n = a,, n,= dy>
i=1 j=0 i=0 j=1

k-1 k—1
o Measures that exclude ay,: Y a,/l D a,/(1=ay)
i=l

=l

k-1
e Measures that include a,y: > a,/!
i=0
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»» Mixed-valued vectors

Some of the coordinates of the vectors x are real and the rest are
discrete.

Methods for measuring the proximity between two such x; and x;.

> Adopt a proximity measure (PM) suitable for real-valued vectors.

» Convert the real-valued features to discrete ones and employ a
discrete PM.

The more general case of mixed-valued vectors:

» Here nominal, ordinal, interval-scaled, ratio-scaled features are
treated separately.
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The similarity function between X; and X; IS:

s(x;,x;)= ZS (X;,X, )/Zw

In the above deﬂmtlon

» w,=0, if at least one of the g-th coordinates of x; and x; are
undefined or both the g-th coordinates are equal to 0.
Otherwise w,=1.

e If the g-th coordinates are binary, s,(x;,x;)=1 if x;;=X;,;=1 and 0
otherwise.

e If the g-th coordinates are nominal or ordinal, s (x;X,)=1 if x;;=X;,
and 0 otherwise.

e If the g-th coordinates are interval or ratio scaled-valued
Sy (X X;) =1—| X — X [ /1,

where r, is the interval where the g-th coordinates of the
vectors of the data set X lie.
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** Fuzzy measures

Let x, ye[0,1]". Here the value of the i-th coordinate, x; of x, is
not the outcome of a measuring device.

» The closer the coordinate x; is to 1 (0), the more likely the
vector X possesses (does not possess) the I-th characteristic.

> As X; approaches 0.5, the certainty about the possession or
not of the i-th feature from X decreases.

A possible similarity measure that can quantify the above is:

$(x,,,) = max(min(l - x,,1 - ,), min(x,, y,))

Then l s
Sg()_C,X) vy (ZS(X,-,yl-)qj
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% Missing data
For some vectors of the data set X, some features values are unknown

Ways to face the problem:

» Discard all vectors with missing values (not recommended for small
data sets)

> Find the mean value m; of the available i-th feature values over that
data set and substitute the missing i-th feature values with m..

» Define b;=0, if both the i-¢/ features x;, y; are available and 1
otherwise. Then

P(x,y) = . Z¢(Xi, Vi)

where ¢(x.,y;) denotes the PM between two scalars x;, y;.

> Find the average proximities ¢,,.(i) between all feature vectors in X
along all components. Then

@(KaZ) : ZW(xiayi)

where y(x;y;)=ax.y;), if both x; and y; are available and ¢,,,(i) 23
otherwise.



PROXIMITY FUNCTIONS BETWEEN A

VECTOR AND A SET
“ Let X={X{,X5,....xnyand C c X, x € X

< All points of C contribute to the definition of (x, C)
» Max proximity function

Pmax (X, C) =max . (X, y)

» Min proximity function
Pmin (X, C) =min,c ©(X, y)

» Average proximity function

: 1 , o
Pl (x,C) = Z;@(z,z) (n is the cardinality of C)
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“* A representative(s) of C, r. , contributes to the definition of
2(%,C)

In this case: o (x,C)=o(X1c)
Typical representatives are:
> The mean vector:

m, =(%JZZ where n is the cardinality of C
» The mean center: d: a dissimilarity

—— | measure

meeC: Zd(mCaX)S Zd(gaz)a Vzel

XEC )_/eC

> The median center:
m,., €C: med(d(m,,,y)|y€C)<med(d(z,y)|yeC), VzeC

NOTE: Other representatives (e.g., hyperplanes, hyperspheres) are
useful in certain applications (e.g., object identification using

clustering techniques). -



PROXIMITY FUNCTIONS BETWEEN SETS

“ Let X:{Xl,---’XN}/ D;, ch X and nileill njlejl
« All points of each set contribute to (D;,D;)

» Max proximity function (measure but not metric, only if & is a
similarity measure)

S{)max(Dl’D ) maXxeD YED; SO(X y)

» Min proximity function (measure but not metric, only if & is a
dissimilarity measure)

Sof;in(DiaDj) Y min)_ceDi,)_/eDj SO()_Cﬂ X)

» Average proximity function (not a measure, even if o is a
measure)

Do (D, (A" )Z > (2. )

"] JxeD xeD; 26



“ Each set D, is represented by its representative vector m;

» Mean proximity function (it is a measure provided that & is a
measure):

Sofvfean(DiﬁDj):SO(n_/libmj)

I’lil/lj

> 0.(D;,D;)= g(m;,m )

I’li+lflj

NOTE: Proximity functions between a vector x and a set C may be
derived from the above functions if we set D,={x}.
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» Remarks:

o Different choices of proximity functions between sets may
lead to totally different clustering results.

o Different proximity measures between vectors in the same
proximity function between sets may lead to totally different
clustering results.

e The only way to achieve a proper clustering is

— by trial and error and,

— taking into account the opinion of an expert in the field of
application.
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