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CLUSTERING

❖ Basic Concepts

In clustering or unsupervised learning no training data,
with class labeling, are available. The goal becomes:
Group the data into a number of sensible clusters
(groups). This unravels similarities and differences among
the available data.

➢ Applications:

• Engineering

• Bioinformatics

• Social Sciences

• Medicine

• Data and Web Mining

➢ To perform clustering of a data set, a clustering
criterion must first be adopted. Different clustering
criteria lead, in general, to different clusters.
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➢ A simple example

Blue shark, 
sheep, cat,

dog

Lizard, sparrow, 
viper, seagull, gold 

fish, frog, red 
mullet

1.Two clusters
2.Clustering criterion:

How mammals bear
their progeny

Gold fish, red 
mullet, blue 

shark

Sheep, sparrow, 
dog, cat, seagull, 
lizard, frog, viper

1.Two clusters
2.Clustering criterion:

Existence of lungs
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❖ Clustering task stages

➢ Feature Selection: Information rich features-Parsimony

➢ Proximity Measure: This quantifies the term similar or
dissimilar.

➢ Clustering Criterion: This consists of a cost function or
some type of rules.

➢ Clustering Algorithm: This consists of the set of
steps followed to reveal the structure, based on the
similarity measure and the adopted criterion.

➢ Validation of the results.

➢ Interpretation of the results.
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➢ Depending on the similarity measure, the clustering
criterion and the clustering algorithm different clusters
may result. Subjectivity is a reality to live with from
now on.

➢ A simple example: How many clusters??

2 or 4 ??
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❖ Basic application areas for clustering 

➢ Data reduction. All data vectors within a cluster are 
substituted (represented) by the corresponding cluster 
representative.

➢ Hypothesis generation.

➢ Hypothesis testing.

➢ Prediction based on groups.
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❖ Clustering Definitions

➢ Hard Clustering: Each point belongs to a single cluster

• Let 

• An m-clustering R of X, is defined as the 

partition of X into m sets (clusters), C1, 

C2,…,Cm, so that

–

–

–

In addition, data in Ci are more similar to each 

other and less similar to the data in the rest of the 
clusters.  Quantifying the terms similar-dissimilar 
depends on the types of clusters that are expected

to underlie the structure of X.
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➢ Fuzzy clustering:  Each point belongs to all clusters up 
to some degree.

A fuzzy clustering of X into m clusters is characterized 

by m functions

•

•

•
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These are known as membership functions.  
Thus, each xi belongs to any cluster “up to 
some degree”, depending on the value of
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TYPES OF FEATURES

❖With respect to their domain

➢ Continuous (the domain is a continuous subset of ).

➢ Discrete (the domain is a finite discrete set).

• Binary or dichotomous (the domain consists of two possible values).

❖With respect to the relative significance of the values they 
take

➢ Nominal (the values code states, e.g., the sex of an individual).

➢ Ordinal (the values are meaningfully ordered, e.g., the rating of the 

services of a hotel (poor, good, very good, excellent)).

➢ Interval-scaled (the difference of two values is meaningful but their 

ratio is meaningless, e.g., temperature).

➢ Ratio-scaled (the ratio of two values is meaningful, e.g., weight).
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PROXIMITY MEASURES

❖ Between vectors

➢Dissimilarity measure (between vectors of X) is a 
function

with the following properties

•

•

•

⎯→⎯ XXd :
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If in addition

•

•

(triangular inequality)

d is called a metric dissimilarity measure.
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➢Similarity measure (between vectors of X) is a 

function

with the following properties

•

•

•

Xyxsyxss +− ,,),(: 00

⎯→⎯ XXs :

Xyxxysyxs = ,),,(),(

Xxsxxs = ,),( 0



14

If in addition

•

•

s is called a metric similarity measure.

❖ Between sets

Let Di  X, i=1,…,k and U={D1,…,Dk}

A proximity measure  on U is a function

A dissimilarity measure has to satisfy the relations of 
dissimilarity measure between vectors, where Di

’
‘s are used 

in place of x, y (similarly for similarity measures).
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⎯→⎯ UU:
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PROXIMITY MEASURES BETWEEN VECTORS

❖ Real-valued vectors

➢ Dissimilarity measures (DMs)

• Weighted lp metric DMs

Interesting instances are obtained for

– p=1 (weighted Manhattan norm)

– p=2 (weighted Euclidean norm)

– p=∞ (d(x,y)=max1il wi|xi-yi| )
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• Other measures

–

where bj and aj are the maximum and the minimum 

values of the j-th feature, among the vectors of X

(dependence on the current data set)

–















−

−
−−= 

=

l

j jj

jj

G
ab

yx

l
yxd

1

10

||1
1log),(


=















+

−
=

l

j jj

jj

Q
yx

yx

l
yxd

1

2

1
),(



17

➢ Similarity measures

• Inner product

• Tanimoto measure

•
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❖ Discrete-valued vectors

➢ Let F={0,1,…,k-1} be a set of symbols and X={x1,…,xN}  Fl

➢ Let A(x,y)=[aij], i, j=0,1,…,k-1, where aij is the number of places where 
x has the i-th symbol and y has the j-th symbol.

NOTE:

Several proximity measures can be expressed as combinations of the 
elements of A(x,y).

➢ Dissimilarity measures:

• The Hamming distance (number of places where x and y differ)

• The l1 distance
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➢ Similarity measures:

• Tanimoto measure :

where

• Measures that exclude a00:

• Measures that include a00:
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❖ Mixed-valued vectors

Some of the coordinates of the vectors x are real and the rest are

discrete.

Methods for measuring the proximity between two such xi and xj:

➢ Adopt a proximity measure (PM) suitable for real-valued vectors.

➢ Convert the real-valued features to discrete ones and employ a 
discrete PM.

The more general case of mixed-valued vectors:

➢ Here nominal, ordinal, interval-scaled, ratio-scaled features are 
treated separately.
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The similarity function between xi and xj is:

In the above definition:

• wq=0, if at least one of the q-th coordinates of xi and xj are 
undefined or both the q-th coordinates are equal to 0. 
Otherwise wq=1.

• If the q-th coordinates are binary, sq(xi,xj)=1 if xiq=xjq=1 and 0

otherwise.

• If the q-th coordinates are nominal or ordinal, sq(xi,xj)=1 if xiq=xjq

and 0 otherwise.

• If the q-th coordinates are interval or ratio scaled-valued

where rq is the interval where the q-th coordinates of the 
vectors of the data set X lie.
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❖ Fuzzy measures

Let x, y[0,1]l. Here the value of the i-th coordinate, xi, of x, is 

not the outcome of a measuring device.

➢ The closer the coordinate xi is to 1 (0), the more likely the 

vector x possesses (does not possess) the i-th characteristic.

➢ As xi approaches 0.5, the certainty about the possession or 

not of the i-th feature from x decreases.

A possible similarity measure that can quantify the above is:

Then
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❖ Missing data
For some vectors of the data set X, some features values are unknown

Ways to face the problem:

➢ Discard all vectors with missing values (not recommended for small 
data sets)

➢ Find the mean value mi of the available i-th feature values over that 
data set and substitute the missing i-th feature values with mi.

➢ Define bi=0, if both the i-th features xi, yi are available and 1
otherwise. Then 

where (xi,yi) denotes the PM  between two scalars xi, yi.

➢ Find the average proximities avg(i) between all feature vectors in X
along all components. Then

where (xi,yi)=(xi,yi), if both xi and yi are available and avg(i)
otherwise.
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PROXIMITY FUNCTIONS BETWEEN A 
VECTOR AND A SET

❖ Let X={x1,x2,…,xN} and C  X, x  X

❖ All points of C contribute to the definition of (x, C)

➢ Max proximity function

➢ Min proximity function

➢ Average proximity function
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❖ A representative(s) of C, rC , contributes to the definition of 
(x,C)

In this case: (x,C)=(x,rC)

Typical representatives are:

➢ The mean vector:

➢ The mean center:

➢ The median center:

NOTE: Other representatives (e.g., hyperplanes, hyperspheres) are 
useful in certain applications (e.g., object identification using 
clustering techniques).
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where nC is the cardinality of C

d: a dissimilarity 

measure
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PROXIMITY FUNCTIONS BETWEEN SETS

❖ Let X={x1,…,xN}, Di, Dj  X and ni=|Di|, nj=|Dj|

❖ All points of each set contribute to (Di,Dj)

➢ Max proximity function (measure but not metric, only if  is a 

similarity measure)

➢ Min proximity function (measure but not metric, only if  is a 

dissimilarity measure)

➢ Average proximity function (not a measure, even if  is a 

measure)
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❖ Each set Di is represented by its representative vector mi

➢ Mean proximity function (it is a measure provided that  is a 
measure):

➢

NOTE: Proximity functions between a vector x and a set C may be 
derived from the above functions if we set Di={x}.
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➢ Remarks:

• Different choices of proximity functions between sets may 
lead to totally different clustering results.

• Different proximity measures between vectors in the same 
proximity function between sets may lead to totally different
clustering results.

• The only way to achieve a proper clustering is 

− by trial and error and,

− taking into account the opinion of an expert in the field of 
application.


