LINEAR CLASSIFIERS

* The Problem: Consider a two class task with ω_{1}, ω_{2}

$$
\begin{aligned}
& g(\underline{x})=\underline{w}^{T} \underline{x}+w_{0}=0= \\
& w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{l} x_{l}+w_{0}=0
\end{aligned}
$$

Assume $\underline{x}_{1}, \underline{x}_{2}$ on the decision hyperplane:

$$
\begin{aligned}
& 0=\underline{w}^{T} \underline{x}_{1}+w_{0}=\underline{w}^{T} \underline{x}_{2}+w_{0} \Rightarrow
\end{aligned}
$$

> Hence:

$\underline{w}+$ on the hyperplane
 $g(\underline{x})=\underline{w}^{T} \underline{x}+w_{0}=0$

S, รัจюต $d=\frac{\left|w_{0}\right|}{\sqrt{w_{1}^{2}+w_{2}^{2}}}, \quad z=\frac{|g(\underline{x})|}{\sqrt{w_{1}^{2}+w_{2}^{2}}}$
> Assume linearly separable classes, i.e.,

$$
\begin{aligned}
\exists \underline{w}^{*}: & w^{*^{T}} \underline{x}>0 \quad \forall \underline{x} \in \omega_{1} \\
& \underline{w}^{*^{T}} \underline{x}<0 \quad \forall \underline{x} \in \omega_{2}
\end{aligned}
$$

$>$ The case $\underline{w}^{* T} \underline{x}+w_{0}^{*}$
falls under the above formulation, since

- $\underline{w}^{\prime} \equiv\left[\begin{array}{l}\underline{w}^{*} \\ \widehat{w}_{0}^{*}\end{array}\right], \underline{x^{\prime}}=\left[\begin{array}{l}\underline{x} \\ 1\end{array}\right] \rightarrow \underline{w}^{*^{\top}} \underline{x}+w_{0}^{*}=0$

- $\underline{w}^{* T} \underline{x}+w_{0}^{*}=\underline{w}^{\prime T} \underline{x}^{\prime}=0$
> Our goal: Compute a solution, i.e., a hyperplane w, so that

$$
\underline{w}^{T} \underline{x}(><) 0 \underline{x} \in \quad \omega_{1} \omega_{2}
$$

- The steps
- Define a cost function to be minimized
- Choose an algorithm to minimize the cost function
- The minimum corresponds to a solution
> The Cost Function

$$
\Rightarrow J(\underline{w})=\sum_{\underline{x} \in Y}\left(\delta_{x} \underline{w}^{T} \underline{x}\right) \quad \text { : perception } \underset{\sim}{\sim} \boldsymbol{p}^{r} \varphi^{\text {r }}
$$

- Where Y is the subset of the vectors wrongly classified by \underline{w}. When $Y=($ empty set) a solution is achieved and

$$
Y=\phi \rightarrow \quad J(\underline{w})=0
$$

$\cdot \begin{cases}\delta_{x}=-1 \text { if } \frac{\underline{w}^{\top} \underline{x}<0}{\underline{x} \in Y \text { and } \underline{x} \in \omega_{1}} \\ \delta_{x}=+1 \text { if } \frac{\underline{x} \in Y \text { and } \underline{x} \in \omega_{2}}{\underline{w}^{\top} \underline{x}>0}\end{cases}$ $\Gamma_{1} \simeq 1$? ? \sim er $Y=\phi$ ven, $\underline{w}^{\top} \underline{x}>0 \rightarrow x \in \omega$, $\underline{w}^{\top} \underline{x}<_{0} \rightarrow x \in \omega_{\Gamma}$

- $J(\underline{w}) \geq 0$
- $J(\underline{w})$ is piecewise linear (WHY?)
> The Algorithm
- The philosophy of the gradient descent is adopted.

$$
\begin{aligned}
& \underline{w}(\text { new })=\underline{w}(\text { old })+\Delta \underline{w} \\
& \left.\Delta \underline{w}=-\mu \frac{\partial J(\underline{w})}{\partial \underline{w}} \right\rvert\, \underline{w}=\underline{w}(\text { old })
\end{aligned}
$$

$$
w
$$

- Wherever valid

$$
\Delta \underline{w}=-\left.\mu \frac{\partial \partial(\underline{w})}{\partial \underline{w}}\right|_{\underline{w}=\underline{w} \text { old }}
$$

$$
\frac{\partial J(\underline{w})}{\partial \underline{w}}=\frac{\partial}{\partial \underline{w}}\left(\sum_{\underline{x} \in Y} \delta_{x} \underline{w}^{T} \underline{x}\right)=\sum_{\underline{x} \in Y} \delta_{x} \underline{\underline{w}} \text { new }=\underline{w}_{\text {old }}+\Delta \underline{w}
$$

 5.$$
\underline{w}(t+1)=\underline{w}(t)-\rho_{t} \sum_{\underline{x} \in Y} \delta_{x} \underline{x}
$$

This is the celebrated Perceptron Algorithm

FIGURE 3.2

Geometric interpretation of the perceptron algorithm. The update of the weight vector is in the direction of \boldsymbol{x} in order to turn the decision hyperplane to include \boldsymbol{x} in the correct class.

FIGURE 3.3

An example of the perceptron algorithm. After the update of the weight vector, the hyperplane is turned from its initial location (dotted line) to the new one (full line), and all points are correctly classified.

$$
\begin{aligned}
& \text { : } \\
& \text { Biceõ } \\
& \rho_{0} \text {-ivi - } \\
& t=0-
\end{aligned}
$$

$$
\begin{aligned}
& Y=\phi-
\end{aligned}
$$

$$
\begin{aligned}
& \frac{w(t+1)=w(t)-\rho_{t} \sum_{x \in y} \partial_{x} \underline{x} \mid-}{\rho_{\in} \text { weir - }} \\
& f=f+1- \\
& Y=\phi \quad \text {-inijl }
\end{aligned}
$$

> An example:

$>$ The perceptron algorithm converges in a finite number of iteration steps to a solution if

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \sum_{k=0}^{t} \rho_{k} \rightarrow \infty \\
& \text { e.g. },:\left|\rho_{t}=\frac{c}{t}\right|
\end{aligned}
$$

* A useful variant of the perceptron algorithm
\Rightarrow Rerrard \& Punishment
(ilstex

$$
\begin{aligned}
& \underline{w}(t+1)=\underline{w}(t)+\rho \underline{x}_{(t)},\left\{\begin{array}{l}
\underline{w}^{T}(t) \underline{x}_{(t)} \leq 0 \\
\underline{x}_{(t)} \in \omega_{1}
\end{array}\right. \\
& \underline{w}(t+1)=\underline{w}(t)-\rho \underline{x}_{(t)},\left\{\begin{array}{l}
\underline{w}^{T}(t) \underline{x}_{(t)} \geq 0 \\
\underline{x}_{(t)} \in \omega_{2}
\end{array}\right. \\
& \underline{w}(t+1)=\underline{w}(t) \text { otherwise } \longrightarrow \dot{v}, \sim v i \sim \sim \omega
\end{aligned}
$$

$>$ It is a reward and punishment type of algorithm

$$
\begin{aligned}
& x: \omega_{1} \\
& 0: \omega_{\mu}
\end{aligned}
$$

$$
\underline{w}^{\top} \underline{x} \geqslant_{\omega_{r}}^{\omega_{1}}
$$

$$
\begin{aligned}
& 2,1 \Gamma_{6}^{0} \\
& {\left[, 16^{0}\right.} \\
& \Gamma-16
\end{aligned}
$$

$$
\underline{w}^{\top}(0)\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]=0 \quad \stackrel{x}{\longrightarrow} \underline{w}(1)=\underline{w}(0)+1 \cdot\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

$$
\left[0,\left[b^{0} \quad{\underset{w}{c}}^{\top}(1)\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=1>0 \xrightarrow{\text { wrep }} \underset{x}{w}(r)=\underline{w}(1)\right.\right.
$$

$$
\left.\underset{W^{T}(r)}{\omega_{r^{2}}} \left\lvert\, \begin{array}{c}
0 \\
-1 \\
1
\end{array}\right.\right]=1>0 \xrightarrow{x} \underline{W}(r)=\underline{W}(r)-1 \cdot\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
$$

$\overrightarrow{\mu_{4}} 0_{0}^{0}$

$$
\underline{w}^{\top} \underline{x}=0 \rightarrow\left[\begin{array}{lll}
-1 & 0 & 0
\end{array}\left[\begin{array}{c}
x_{1} \\
x_{1} \\
1
\end{array}\right]\right.
$$

$\sum_{--1}^{\sim} 0_{6}^{0}$

$$
\begin{aligned}
& \begin{array}{c}
V(\Sigma) \\
\left.\because \xrightarrow{\text { sio }}\right|_{60} ^{0}- \\
W(V)
\end{array} \\
& \underline{w}(V)=\underline{w}(y)=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] \\
& x=0
\end{aligned}
$$

$$
\begin{aligned}
& W^{T}(\mu)\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=-1<0 \xrightarrow{\mu_{2}} \underline{W}(\Gamma)=\underline{W}\left(r^{\mu}\right) \\
& w^{\top}(\Gamma)\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]=1>0 \xrightarrow{\underline{w}(\omega)=\underline{w}(\varepsilon), ~(\dot{m}}
\end{aligned}
$$

The perceptron

$>$ The network is called perceptron or neuron
> It is a learning machine that learns from the training vectors via the perceptron algorithm

FIGURE 3.5

The basic perceptron model. (a) A linear combiner is followed by the activation function. (b) The combiner and the activation function are merged together.
$>$ Example: At some stage t the perceptron algorithm results in

$$
\begin{aligned}
& w(t) \rightarrow w_{1}=1, w_{2}=1, w_{0}=-0.5 \\
& \\
& \Gamma \rightarrow x_{1}+x_{2}-0.5=0
\end{aligned}
$$

The corresponding hyperplane is

- -1 Pocket
C inom $w_{s}=w(0)$

(
h) $h_{s} \mu_{1} \mu_{1}$

$$
\begin{aligned}
& \text { - } \\
& h_{s}=h \\
& w_{s}=w(f+1)
\end{aligned}
$$

: ~abin تJ

-

$$
\underline{w}_{i}^{\top} \underline{x}>\underline{w}_{j}^{\top} \underline{x} ; \dot{\forall}{ }_{j} \neq i
$$

: evisin kesler, win

$$
\begin{aligned}
& \underline{x}_{i j}=\left[\underline{0}^{\top}, \underline{o}^{\top}, \ldots, \underline{x}^{\top}, \ldots,-\underline{x}^{\top}, \ldots, 0^{\top}\right\rceil_{(l+1) M \times 1}^{\top} \\
& \text { - pinvierési=we }
\end{aligned}
$$

$n^{\top} \underline{x}^{1 r} \mathbb{z}_{\omega_{j}}^{\omega^{\prime}}$

$$
\underline{W}=\left[W_{1}^{\top}, \cdots, W_{M}^{\top}\right]^{\top}:(00 ; g, 1) \mu
$$

$(M-1) N:$:

$$
\begin{aligned}
& \underbrace{(l+1) M \times 1}_{3}{\underset{3}{3}}^{l}=9 \times 1 \\
& \omega_{1}:[T, 1]^{\top},[r, r]^{\top},[r, 1]^{\top} \\
& \omega_{r}:[1,-1)^{\top}, \quad[1,-r)^{\top},(r,-r)^{\top}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\underline{x}=\lceil 1,-r, 1\rceil^{\top} \\
\omega_{r} \rightarrow i=r \\
x_{r 1}=\left\lceil-1, r,-1, \frac{-\underline{x}^{\top}}{x_{r}} \frac{x^{\top}}{T},-r, 1,0,0\right\rceil 9 \times 1
\end{array}\right. \\
& x_{r \mu}=\left[0,0,0, \frac{x^{\top}}{1,-r, 1}, \frac{-\underline{x}^{\top}}{-1, r,-1}\right\rceil_{9 \times 1} \\
& \left\{\begin{array}{l}
\underline{x}=[-r, 1,1]^{\top} \\
\omega_{r \rightarrow i} \rightarrow r
\end{array}\right. \\
& x_{r 1}=\left[r,-1,-1,0,0,0,-r_{7} 1,1\right]_{9 \times 1} \\
& x_{\mu \mu}=[0,0,0, r,-1,-1,-r, 1,1] 9 \times 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { - kesler süm }
\end{aligned}
$$

$$
\begin{aligned}
& \text { : }
\end{aligned}
$$

ج秋

$$
y= \pm 1 \quad \text { rij } \quad \text { ~eoín sim }
$$

$$
\underline{w}^{\top} \underline{x} \text { insero } \underline{x} v, \mu, l l s .
$$

$$
\dot{\sim} \dot{\sim}\left(\quad J(\underline{w})=E\left[\left|y-\underline{w}^{\top} \underline{x}\right|^{r}\right]\right.
$$

MSE: Mean Square Error
 $y(\underline{x})=y= \pm 1$ siep desired true

\[

\]

Least Squares Methods
> If classes are linearly separable, the perceptron output results in ± 1
> If classes are NOT linearly separable, we shall compute the weights $w_{1}, w_{2}, \ldots, w_{0}$
so that the difference between

- The actual output of the classifier, $\underline{w}^{T} \underline{x}$, and
- The desired outputs, e.g.

$$
\begin{aligned}
& +1 \text { if } \underline{x} \in \omega_{1} \\
& -1 \text { if } \underline{x} \in \omega_{2}
\end{aligned}
$$

to be SMALL
$>$ SMALL, in the mean square error sense, means to choose \underline{w} so that the cost function

- $J(\underline{w}) \equiv E\left[\left(y-\underline{w}^{T} \underline{x}^{2}\right]\right.$ is minimum
- $\hat{\hat{w}}=\arg \min J(\underline{w})$
w
- y the corresponding desiredresponses
$>$ Minimizing
$J(\underline{w})$ w.r. to \underline{w} resultsin :

$$
\begin{aligned}
\frac{\partial J(\underline{w})}{\partial \underline{w}} & =\frac{\partial}{\partial \underline{w}} E\left[\left(y-\underline{w}^{T} x\right)^{2}\right]=0 \\
& =2 E\left[\underline{x}\left(y-\underline{x}^{T} \underline{w}\right)\right] \Rightarrow \\
E\left[\underline{x} \underline{x}^{T}\right] \underline{w} & =E[\underline{x} y] \Rightarrow
\end{aligned}
$$

$$
\underline{\hat{\hat{w}}}=R_{x}^{-1} E[\underline{x} y]
$$

where R_{x} is the autocorrelation matrix

$$
\begin{aligned}
& R_{x} \equiv E\left[\underline{x}^{T}\right]=\left[\begin{array}{ccc}
E\left[x_{1} x_{1}\right] & E\left[x_{1} x_{2}\right] \ldots & E\left[x_{1} x_{l}\right] \\
\ldots & \ldots & \ldots \\
E\left[x_{l} x_{1}\right] & E\left[x_{l} x_{2}\right] \ldots & E\left[x_{l} x_{l}\right]
\end{array}\right] \\
& \text { and } E[\underline{x} y]=\left[\begin{array}{c}
E\left[x_{1} y\right] \\
\ldots \\
E\left[x_{l} y\right]
\end{array}\right] \text { the crosscorrelation vector }
\end{aligned}
$$

FIGURE 3.6

Interpretation of the MSE estimate as an orthogonal projection on the input vector elements' subspace.
> Multi-class generalization

- The goal is to compute M linear discriminant functions:

$$
g_{i}(\underline{x})=\underline{w}_{i}^{T} \underline{x} \quad ;=1, r, \ldots, \mu
$$

according to the MSE.

- Adopt as desired responses y_{i} : Telen 060 , $3, \boldsymbol{j}$

$$
\begin{aligned}
& y_{i}=1 \text { if } \quad \underline{x} \in \omega_{i} \\
& y_{i}=0 \quad \text { otherwise }
\end{aligned}
$$

- Let

$$
\underline{y}=\left[y_{1}, y_{2}, \ldots, y_{M}\right]^{T}
$$

- And the matrix

$$
W=\left[\underline{w}_{1}, \underline{w}_{2}, \ldots, \underline{w}_{M}\right]
$$

- The goal is to compute W :

$$
\begin{gathered}
\hat{W}=\arg \min _{W} E\left[\left\|\underline{y}-W^{T} \underline{x}\right\|^{2}\right]=\arg \min _{W} E\left[\sum_{i=1}^{M}\left(y_{i}-\underline{w}_{i}^{T} \cdot \underline{x}\right)^{2}\right] \\
\text { MSE viCNOT~LM J, on }
\end{gathered}
$$

- The above is equivalent to a number M of MSE minimization problems. That is:

Design each \underline{w}_{i} so that its desired output is 1 for $\underline{x} \in \omega_{i}$ and 0 for any other class.
> Remark: The MSE criterion belongs to a more general class of cost function with the following important property:

- The value of $g_{i}(\underline{x})$ is an estimate, in the MSE sense, of the a-posteriori probability $P\left(\omega_{i} \mid \underline{x}\right)$, provided that the desired responses used during training are $y_{i}=1, \underline{x} \in \omega_{i}$ and 0 otherwise.
$x>$ Mean square error regression: Let $y \in \mathfrak{R}^{M}, \underline{x} \in \mathfrak{R}^{\ell}$ be jointly distributed random vectors with a joint pdf $p(\underline{x}, \underline{y})$
- The goal: Given the value of \underline{x} estimate the value of \underline{y}. In the pattern recognition framework, given \underline{x} one wants to estimate the respective label $y= \pm 1$.
- The MSE estimate $\underline{\hat{y}}$ of \underline{y} given \underline{x} is defined as:

$$
\left.\hat{\hat{y}}=\arg \min _{\tilde{y}} E\|y-\tilde{y}\|^{2}\right\rfloor
$$

- It turns out that:

$$
\underline{\hat{y}}=E[\underline{y} \mid \underline{x}] \equiv \int_{-\infty}^{+\infty} \underline{y} p(\underline{y} \mid \underline{x}) d \underline{y}
$$

The above is known as the regression of \underline{y} given \underline{x} and it is, in general, a non-linear function of \underline{x}. If $p(\underline{x}, \underline{y})$ is Gaussian the MSE regressor is linear.

Sum of Error Squares Estimation $\omega \dot{\sigma}=\operatorname{wrch}_{5} \sin 3.4 .3$

$$
\dot{\sim} C_{c}^{\prime} \quad J(\underline{w})=\sum_{i=1}^{N}\left(y_{i}-\underline{x}_{i}^{\top} \underline{w}\right)^{r} \equiv \sum_{j=1}^{N} e^{r}
$$

$$
\begin{aligned}
& \frac{\partial J(\underline{w})}{\partial \underline{w}}=0 \text { Minimizing } \sum_{i=1}^{N} \underline{x}_{i}\left(y_{i}-\underline{x}_{i}^{\top} \underline{\hat{w}}\right)=0 \rightarrow\left(\sum_{i=1}^{N} \underline{x}_{i} \underline{x}_{i}^{\top}\right) \hat{w}=\sum_{i=1}^{N} \underline{x}_{i} y_{i}
\end{aligned}
$$

$$
\begin{aligned}
& x \hat{w}=\frac{y}{0} \quad\left(x^{\top} x\right) \hat{w}=x^{\top} \underline{y} \longrightarrow \hat{w}=\left(x^{\top} x\right)^{-1} x^{\top} y
\end{aligned}
$$

$$
\begin{aligned}
& N=l=
\end{aligned}
$$

* SMALL in the sum of error squares sense means

$$
J(\underline{w})=\sum_{i=1}^{N}\left(y_{i}-\underline{w}^{T} \underline{x}_{i}\right)^{2}
$$

$\left(y_{i}, \underline{x}_{i}\right)$: training pairs that is, the input \underline{x}_{i} and its corresponding class label $y_{i}(\pm 1)$.
$>\frac{\partial J(\underline{w})}{\partial \underline{w}}=\frac{\partial}{\partial \underline{w}} \sum_{i=1}^{N}\left(y_{i}-\underline{w}^{T} \underline{x}_{i}\right)^{2}=0 \Rightarrow$

$+1 \rightarrow \omega_{\text {, }}$
$-1 \rightarrow \omega_{r}$

$$
\left(\sum_{i=1}^{N} \underline{x}_{i} \underline{x}_{i}{ }^{T}\right) \underline{w}=\sum_{i=1}^{N} \underline{x}_{i} y_{i}
$$

* Pseudoinverse Matrix
> Define

$$
\begin{aligned}
& X=\left[\begin{array}{r}
\underline{x}_{1}^{T} \\
\underline{x}_{2}^{T} \\
\ldots \\
\underline{x}_{N}^{T}
\end{array}\right](\text { an } N x l \text { matrix }) \\
& \underline{y}=\left[\begin{array}{c}
y_{1} \\
\ldots \\
y_{N}
\end{array}\right] \text { corresponding desired responses } \\
> & X^{T}=\left[\underline{x}_{1}, \underline{x}_{2}, \ldots, \underline{x}_{N}\right] \quad(\text { an } l x N \text { matrix }) \\
> & X^{T} X=\sum_{i=1}^{N} \underline{x}_{i} \underline{x}_{i}^{T} \\
> & X^{T} \underline{y}=\sum_{i=1}^{N} \underline{x}_{i} y_{i}
\end{aligned}
$$

Thus $\quad\left(\sum_{i=1}^{N} \underline{x}_{i}^{T} \underline{x}_{i}\right) \underline{\hat{\hat{h}}}=\left(\sum_{i=1}^{N} \underline{x}_{i} y_{i}\right)$

$$
\begin{aligned}
& \left(X^{T} X\right) \underline{\hat{w}}=X^{T} \underline{y} \Rightarrow \\
& \hat{\underline{\hat{w}}=\left(X^{T} X\right)^{-1} X^{T} \underline{y}} \\
& =X^{\neq} \underline{y}
\end{aligned}
$$

$$
X^{\neq} \equiv\left(X^{T} X\right)^{-1} X^{T} \quad \text { Pseudoinverse of } X
$$

> Assume $N=l \Rightarrow X$ square and invertible. Then

$$
\begin{aligned}
& \left(X^{T} X\right)^{-1} X^{T}=X^{-1} X^{-T} X^{T}=X^{-1} \Rightarrow \\
& X^{\neq}=X^{-1}
\end{aligned}
$$

$>$ Assume $N>l$. Then, in general, there is no solution to satisfy all equations simultaneously:

$$
X \underline{w}=\underline{y}: \begin{aligned}
& \underline{x}_{1}^{T} \underline{w}=y_{1} \\
& \underline{x}_{2}^{T} \underline{w}=y_{2} \quad N \text { equations }>l \text { unknowns } \\
& \ldots \\
& \underline{x}_{N}^{T} \underline{w}=y_{N}
\end{aligned}
$$

$>$ The "solution" $\underline{w}=X^{\neq} \underline{y}$ corresponds to the minimum sum of squares solution
> Example:

$$
\begin{aligned}
& \omega_{1}:\left[\begin{array}{l}
0.4 \\
0.5
\end{array}\right],\left[\begin{array}{l}
0.6 \\
0.5
\end{array}\right],\left[\begin{array}{l}
0.1 \\
0.4
\end{array}\right],\left[\begin{array}{l}
0.2 \\
0.7
\end{array}\right],\left[\begin{array}{l}
0.3 \\
0.3
\end{array}\right] \\
& \omega_{2}:\left[\begin{array}{l}
0.4 \\
0.6
\end{array}\right],\left[\begin{array}{l}
0.6 \\
0.2
\end{array}\right],\left[\begin{array}{l}
0.7 \\
0.4
\end{array}\right],\left[\begin{array}{l}
0.8 \\
0.6
\end{array}\right],\left[\begin{array}{l}
0.7 \\
0.5
\end{array}\right] \\
& \text { : on }
\end{aligned}
$$

$$
\begin{aligned}
& X^{T} X=\left[\begin{array}{ccc}
2.8 & 2.24 & 4.8 \\
2.24 & 2.41 & 4.7 \\
4.8 & 4.7 & 10
\end{array}\right], X^{T} \underline{y}=\left[\begin{array}{c}
-1.6 \\
0.1 \\
0.0
\end{array}\right] \\
& \underline{w}=\left(X^{T} X\right)^{-1} X^{T} \underline{y}=\left[\begin{array}{c}
-3.13 \\
0.24 \\
1.34
\end{array}\right]
\end{aligned}
$$

* The Bias - Variance Dilemma

A classifier $g(\underline{x})$ is a learning machine that tries to predict the class label y of \underline{x}. In practice, a finite data set D is used for its training. Let us write $g(\underline{x} ; D)$. Observe that:
> For some training sets, $D=\left\{\left(y_{i}, \underline{x}_{i}\right), i=1,2, \ldots, N\right\}$, the training may result to good estimates, for some others the result may be worse.
> The average performance of the classifier can be tested against the MSE optimal value, in the mean squares sense, that is:

$$
\left.E_{D} \mid(g(\underline{x} ; D)-E[y \mid \underline{x}])^{2}\right]
$$

where E_{D} is the mean over all possible data sets D.

- The above is written as:

$$
\begin{gathered}
\left.E_{D} \mid(g(\underline{x} ; D)-E[y \mid \underline{x}])^{2}\right]= \\
\left.\left(E_{D}[g(\underline{x} ; D)]-E[y \mid \underline{x}]\right)^{2}+E_{D} \mid\left(g(\underline{x} ; D)-E_{D}[g(\underline{x} ; D)]\right)^{2}\right]
\end{gathered}
$$

- In the above, the first term is the contribution of the bias and the second term is the contribution of the variance.
- For a finite D, there is a trade-off between the two terms. Increasing bias it reduces variance and vice verse. This is known as the bias-variance dilemma.
- Using a complex model results in low-bias but a high variance, as one changes from one training set to another. Using a simple model results in high bias but low variance.

* LOGISTIC DISCRIMINATION

$>$ Let an M-class task, $\omega_{1}, \omega_{2}, \ldots, \omega_{M}$. In logistic discrimination, the logarithm of the likelihood ratios are modeled via linear functions, i.e.,

$$
\ln \left(\frac{P\left(\omega_{i} \mid \underline{x}\right)}{P\left(\omega_{M} \mid \underline{x}\right)}\right)=w_{i, 0}+\underline{w}_{i}^{T} \underline{x}, i=1,2, \ldots, M-1
$$

$>$ Taking into account that

$$
\sum_{i=1}^{M} P\left(\omega_{i} \mid \underline{x}\right)=1
$$

it can be easily shown that the above is equivalent with modeling posterior probabilities as:

$$
\begin{gathered}
P\left(\omega_{M} \mid \underline{x}\right)=\frac{1}{1+\sum_{i=1}^{M-1} \exp \left(w_{i, 0}+\underline{w}_{i}^{T} \underline{x}\right)} \\
P\left(\omega_{i} \mid \underline{x}\right)=\frac{\exp \left(w_{i, 0}+\underline{w}_{i}^{T} \underline{x}\right)}{1+\sum_{i=1}^{M-1} \exp \left(w_{i, 0}+\underline{w}_{i}^{T} \underline{x}\right)}, l=1,2, \ldots \mathrm{M}-1
\end{gathered}
$$

$>$ For the two-class case it turns out that

$$
\begin{aligned}
& P\left(\omega_{2} \mid \underline{x}\right)=\frac{1}{1+\exp \left(w_{0}+\underline{w}^{T} \underline{x}\right)} \\
& P\left(\omega_{1} \mid \underline{x}\right)=\frac{\exp \left(w_{0}+\underline{w}^{T} \underline{x}\right)}{1+\exp \left(w_{0}+\underline{w}^{T} \underline{x}\right)}
\end{aligned}
$$

$>$ The unknown parameters $\underline{w}_{i}, w_{i, 0}, i=1,2, \ldots, M-1$ are usually estimated by maximum likelihood arguments.
$>$ Logistic discrimination is a useful tool, since it allows linear modeling and at the same time ensures posterior probabilities to add to one.

- 3.7
support vecfor Machine (SVM)

 $g(\underline{x})=\underline{w}^{\top} \underline{x}+w_{0}=0$

generabization performance nic ivi,
$100 \% \rightarrow \sqrt{70 \%} \rightarrow$ Train 30% - Ye torertif
* Support Vector Machines cross validation
The goal: Given two linearly separable classes, design the classifier

$$
g(\underline{x})=\underline{w}^{T} \underline{x}+w_{0}=0
$$ that leaves the maximum margin from both classes us us

$$
\underline{w}^{\top} \underline{x}+w_{0}=0
$$

\qquad
sine

> Margin: Each hyperplane is characterized by

- Its direction in space, i.e., \underline{w}
- Its position in space, i.e., w_{0}
- For EACH direction, \underline{w}, choose the hyperplane that leaves the SAME distance from the nearest points from each class. The margin is twice this distance.
> The distance of a point $\underline{\hat{x}}$ from a hyperplane is given by
$>$ Scale, $\underline{w}, \underline{w}_{0}$, so that at the nearest points from each class the discriminant function is ± 1 :

$$
\begin{aligned}
& |g(\underline{x})|=1\left\{g(\underline{\mathrm{x}})=+1 \text { for } \omega_{1} \text { and } g(\underline{x})=-1 \text { for } \omega_{2}\right\} \\
& \text {. }
\end{aligned}
$$

$>$ Thus the margin is given by

$$
\frac{1}{\|\underline{w}\|}+\frac{1}{\|\underline{w}\|}=\frac{2}{\|w\|}
$$

> Also, the following is valid

$$
\begin{aligned}
& \underline{w}^{T} \underline{x}+w_{0} \geq 1 \quad \forall \underline{x} \in \omega_{1} \\
& \underline{w}^{T} \underline{x}+w_{0} \leq-1 \quad \forall \underline{x} \in \omega_{2}
\end{aligned}
$$

> SVM (linear) classifier

$$
J(\underline{w})=\frac{1}{2}\|\underline{w}\|^{2}
$$

$>$ Subject to

$$
\begin{aligned}
& y_{i}\left(\underline{w}^{T} \underline{x}_{i}+w_{0}\right) \geq 1, i=1,2, \ldots, N \\
& y_{i}=1, \text { for } \underline{x}_{i} \in \omega_{1} \\
& y_{i}=-1, \text { for } \underline{x}_{i} \in \omega_{2}
\end{aligned}
$$

$>$ The above is justified since by minimizing $\|\underline{w}\|$
the margin $\frac{2}{\|w\|}$ is maximised
$>$ The above is a quadratic optimization task, subject to a set of linear inequality constraints. The Karush-
KKT Kuhh-Tucker conditions state that the minimizer satisfies:

- (1) $\frac{\partial}{\partial \underline{w}} \xrightarrow{2}\left(\underline{w}, w_{0}, \underline{\lambda}\right)=\underline{0}$
- (2) $\frac{\partial}{\partial w_{0}} L\left(\underline{w}, w_{0}, \underline{\lambda}\right)=0$
-(3) $\lambda_{i} \geq 0, i=1,2, \ldots, N$
- (4) $\left.\lambda_{i} \mid y_{i}\left(\underline{w}^{T} \underline{x}_{i}+w_{0}\right)-1\right]=0, i=1,2, \ldots, N$
- Where $L(\bullet, \bullet, \bullet)$ is the Lagrangian

$$
L\left(\underline{w}, w_{0}, \underline{\lambda}\right) \equiv \frac{1}{2} \underline{w}^{T} \underline{w}-\sum_{i=1}^{N} \lambda_{i}\left[y_{i}\left(\underline{w}^{T} \underline{x}_{i}+w_{0}\right)-1\right]
$$

> The solution: from the above, it turns out that

- $\underline{w}=\sum_{i=1}^{N} \lambda_{i} y_{i} \underline{x}_{i}$
- $\sum_{i=1}^{N} \lambda_{i} y_{i}=0$

> Remarks:

- The Lagrange multipliers can be either zero or positive. Thus,
- $\underline{w}=\sum_{i=1}^{N_{s}} \lambda_{i} y_{i} \underline{x}_{i}$
where $N_{s} \leq N_{0}$, corresponding to positive Lagrange multipliers
- From constraint (4) above, i.e.,

$$
\lambda_{i}\left[y_{i}\left(\underline{(\underline{x}}^{T} \underline{x}_{i}+w_{0}\right)-1\right]=0, \quad i=1,2, \ldots, N
$$

the vectors contributing to \underline{w} satisfy

$$
\underline{w}^{T} \underline{x}_{i}+w_{0}= \pm 1
$$

- These vectors are known as SUPPORT VECTORS and are the closest vectors, from each class, to the classifier.
- Once \underline{w} is computed, w_{0} is determined from conditions (4).
- The optimal hyperplane classifier of a support vector machine is UNIQUE.
- Although the solution is unique, the resulting Lagrange multipliers are not unique.
$>$ Dual Problem Formulation
- The SVM formulation is a convex programming problem, with
- Convex cost function
- Convex region of feasible solutions
- Thus, its solution can be achieved by its dual problem, i.e.,
- $\underset{\underline{\lambda}}{\operatorname{maximize}} L\left(\underline{w}, w_{0}, \underline{\lambda}\right)$
- subject to

$$
\begin{aligned}
& \underline{w}=\sum_{i=1}^{N} \lambda_{i} y_{i} \underline{x}_{i} \\
& \sum_{i=1}^{N} \lambda_{i} y_{i}=0 \\
& \underline{\lambda} \geq \underline{0}
\end{aligned}
$$

- Combine the above to obtain
$-\underset{\underline{\lambda}}{\operatorname{maximize}}\left(\sum_{i=1}^{N} \lambda_{i}-\frac{1}{2} \sum_{i j} \lambda_{i} \lambda_{j} y_{i} y_{j} \underline{x}_{i}^{T} \underline{x}_{j}\right)$
- subject to

$$
\begin{aligned}
& \sum_{i=1}^{N} \lambda_{i} y_{i}=0 \\
& \underline{\lambda} \geq \underline{0}
\end{aligned}
$$

> Remarks:

- Support vectors enter via inner products
> Non-Separable classes

$$
Q_{\underline{n}, 1,1}^{Q}=1 \sim
$$

$$
0 \leqslant y_{i}\left(\underline{w}^{\top} \underline{x}+w_{0}\right)<1
$$

$$
\begin{aligned}
& y_{i}\left(\underline{w}^{\top} \underline{x}+w_{0}\right)<0
\end{aligned}
$$

$$
\begin{aligned}
& y_{j}\left|\underline{w}^{\top} \underline{x}+w_{0}\right| \geqslant 1-j_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
0 & \delta_{i}^{f} \leqslant 1
\end{aligned}: \Gamma \sim \sim=\left\{\begin{array}{l}
\sim
\end{array}\right\}
\end{aligned}
$$

In this case, there is no hyperplane such that

$$
\underline{w}^{T} \underline{x}+w_{0}(><) 1, \quad \forall \underline{x}
$$

- Recall that the margin is defined as twice the distance between the following two hyperplanes

$$
\begin{aligned}
& \frac{w^{T}}{x}+w_{0}=1 \\
& \text { and }
\end{aligned}
$$

$$
\underline{w}^{T} \underline{x}+w_{0}=-1
$$

$>$ The training vectors belong to one of three possible categories

1) Vectors outside the band which are correctly classified, i.e.,

$$
y_{i}\left(\underline{w}^{T} \underline{x}+w_{0}\right)>1
$$

2) Vectors inside the band, and correctly classified,
i.e.,

$$
0 \leq y_{i}\left(\underline{w}^{T} \underline{x}+w_{0}\right)<1
$$

3) Vectors misclassified, i.e.,

$$
y_{i}\left(\underline{w}^{T} \underline{x}+w_{0}\right)<0
$$

$>$ All three cases above can be represented as

$$
y_{i}\left(\underline{w}^{T} \underline{x}+w_{0}\right) \geq 1-\xi_{i}
$$

1) $\rightarrow \xi_{i}=0$
2) $\rightarrow 0<\xi_{i} \leq 1$
3) $\rightarrow 1<\xi_{i}$
ξ_{i} are known as slack variables
> The goal of the optimization is now two-fold

- Maximize margin
- Minimize the number of patterns with $\xi_{i}>0$, One way to achieve this goal is via the cost

$$
J\left(\underline{w}, w_{0}, \underline{\xi}\right)=\frac{1}{2}\|\underline{w}\|^{2}+\underset{=}{C} \sum_{i=1}^{N} I\left(\xi_{i}\right)
$$

where C is a constant and
)
 Regularization Parameter
 approximation - $v=c\left(\tilde{c}_{0}\right.$

- Following a similar procedure as before we obtain

> KKT conditions

$$
\begin{aligned}
& \text { (1) } \underline{w}=\sum_{i=1}^{N} \lambda_{i} y_{i} \underline{x}_{i} \\
& \text { (2) } \sum_{i=1}^{N} \lambda_{i} y_{i}=0 \\
& \text { (3) } C-\mu_{i}-\lambda_{i}=0, i=1,2, \ldots, N \\
& \text { (4) } \lambda_{i}\left[y_{i}\left(\underline{w}^{T} \underline{x}_{i}+w_{0}\right)-1+\xi_{i}\right]=0, \quad i=1,2, \ldots, N \\
& \text { (5) } \mu_{i} \xi_{i}=0, \quad i=1,2, \ldots, N \\
& \text { (6) } \mu_{i}, \lambda_{i} \geq 0, \quad i=1,2, \ldots, N
\end{aligned}
$$

> The associated dual problem
Maximize $\quad \underline{\lambda}\left(\sum_{i=1}^{N} \lambda_{i}-\frac{1}{2} \sum_{i, j} \lambda_{i} \lambda_{j} y_{i} y_{j} \underline{x}_{i}^{T} \underline{x}_{j}\right)$
subject to

$$
\begin{aligned}
& 0 \leq \lambda_{i} \leq C, i=1,2, \ldots, N \\
& \sum_{i=1}^{N} \lambda_{i} y_{i}=0
\end{aligned}
$$

> Remarks:
The only difference with the separable class case is the existence of C in the constraints
> Training the SVM
A major problem is the high computational cost. To this end, decomposition techniques are used. The rationale behind them consists of the following:

- Start with an arbitrary data subset (working set) that can fit in the memory. Perform optimization, via a general purpose optimizer.
- Resulting support vectors remain in the working set, while others are replaced by new ones (outside the set) that violate severely the KKT conditions.
- Repeat the procedure.
- The above procedure guarantees that the cost function decreases.
- Platt's SMO algorithm chooses a working set of two samples, thus analytic optimization solution can be obtained.

Multi-class generalization

One against All:
: 0 ?

Although theoretical generalizations exist, the most popular in practice is to look at the problem as M twoclass problems (one against all).
assymetric training mimic vinír

$$
\begin{aligned}
& \infty \quad \forall j \neq j \text { if } \underline{x} \in \omega_{j}
\end{aligned}
$$

$$
\begin{aligned}
& \text { assign } \underline{x} \text { in } \omega_{i} \text { if } ;=\underset{k}{\operatorname{argmax}}\left[g_{k}(x) i^{\omega} w^{n}, \infty\right.
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left(b^{\prime},\right) \frac{: \partial h^{\prime}}{3.5}
\end{aligned}
$$

FIGURE 3.12
In this example all four points are support vectors. The margin associated with $g_{1}(\boldsymbol{x})=0$ is smaller compared to the margin defined by the optimal $g(\boldsymbol{x})=0$.

U, (ư) :
vër

$$
\begin{aligned}
& w_{1}+w_{r}+w_{0}-1 \geqslant 0 \\
& w_{1}-w_{r}+w_{0}-1 \geqslant 0
\end{aligned}
$$

$$
w_{1}-w_{p}-w_{0}-1 \geqslant 0
$$

$$
w_{1}+w_{1}-w_{0}-1 \geqslant 0
$$

$$
\left.\alpha\left(w_{1}, w_{r}, w_{0}, \lambda\right)=\frac{w_{1}^{r}+w_{r}^{p}}{r}-\lambda_{1}\left(w_{1}+w_{r}+w_{0}-1\right)\right) ~-\lambda_{r}\left(w_{1}-w_{r}+w_{0}-1\right)
$$

$$
-\lambda_{p}\left(w_{1}-w_{p}+w_{0}-1\right)
$$

$$
-\lambda_{r}\left(w_{1}-w r_{r}-w_{0}-1\right)
$$

$k K T:$

$$
\begin{aligned}
& \frac{\partial f}{\partial r!}=0 \rightarrow r r_{1}=\lambda_{1}+\lambda_{r}+\lambda_{r}+\lambda_{r} \\
& \frac{\partial f}{\partial r_{r}}=0 \rightarrow r_{r}=\lambda_{1}-\lambda_{r}-\lambda_{r}+\lambda_{2} \\
& \lambda_{r}-\lambda_{r}=
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}\left(m_{1}+m_{1}-m_{1}+m_{0}-m_{2}-1\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& y_{r}\left(m_{1} \times m_{1}-h_{0}-1\right)=0 \\
& \left.y_{1}+m_{1}-h_{1}-m_{0}-1\right)=0
\end{aligned}
$$

$$
\eta_{n}+\lambda_{r=-1}
$$

Example:
$C=01 r$
$C=100$.

(a)

(b)
$>$ Observe the effect of different values of C in the case of non-separable classes.

