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❖ The goals:

➢ Select the “optimum” number l of features

➢ Select the “best” l features

❖ Large l has a three-fold disadvantage:

➢ High computational demands

➢ Low generalization performance

➢ Poor error estimates

FEATURE SELECTION
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➢ Given N

• l must be large enough to learn

– what makes classes different

– what makes patterns in the same class similar

• l must be small enough not to learn what makes

patterns of the same class different

• In practice, has been reported to be a sensible
choice for a number of cases

➢ Once l has been decided, choose the l most informative

features

• Best:  Large between class distance, 
Small within class variance
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❖ The basic philosophy

➢ Discard individual features with poor information content

➢ The remaining information rich features are examined 
jointly as vectors

❖ Feature Selection based on statistical Hypothesis Testing

➢ The Goal:  For each individual feature, find whether the 
values, which the feature takes for the different classes,
differ significantly.
That is, answer

• : The values differ significantly

• : The values do not differ significantly

If they do not differ significantly reject feature from 
subsequent stages.

❖ Hypothesis Testing Basics
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➢ The steps:

• N measurements

are known

• Define a function of them

test statistic

so that is easily parameterized in 
terms of θ.

• Let D be an interval, where q has a high 
probability to lie under H0, i.e., pq(q׀θ0)

• Let D  be the complement of D
D Acceptance Interval
D Critical Interval

• If q, resulting from 
lies in D we accept H0, otherwise we reject it.
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➢ Probability of an error

• ρ is preselected and it is known as the significance 

level.
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❖ Application:  The known variance case:

➢ Let x be a random variable and the experimental 

samples,                 , are assumed mutually 
independent. Also let

➢ Compute the sample mean

➢ This is also a random variable with mean value

That is, it is an Unbiased Estimator
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➢ The variance

Due to independence

That is, it is Asymptotically Efficient

➢ Hypothesis test

➢ Test Statistic: Define the variable
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➢ Central limit theorem under H0

➢ Thus, under H0
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➢ The decision steps

• Compute q from xi, i=1,2,…,N

• Choose significance level ρ

• Compute from N(0,1) tables D=[-xρ, xρ]

•

➢ An example: A random variable x has variance
σ2=(0.23)2. Ν=16 measurements are obtained giving

. The significance level is ρ=0.05.

Test the hypothesis
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➢ Since σ2 is known, is N(0,1).  

From tables, we obtain the values with acceptance 
intervals [-xρ, xρ] for normal N(0,1)

➢ Thus
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  95.0463.1ˆ237.1Prob

or

95.0113.0ˆ113.0Prob

or

95.0967.1
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967.1Prob
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1-ρ 0.8 0.85 0.9 0.95 0.98 0.99 0.998 0.999

xρ 1.28 1.44 1.64 1.96 2.32 2.57 3.09 3.29
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➢ Since lies within the above acceptance
interval, we accept H0, i.e.,

The interval [1.237, 1.463] is also known as
confidence interval at the 1-ρ=0.95 level.

We say that: There is no evidence at the 5% level
that the mean value is not equal to
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❖ The Unknown Variance Case

➢ Estimate the variance.  The estimate

is unbiased, i.e.,

➢ Define the test statistic
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➢ This is no longer Gaussian.  If x is Gaussian, then

q follows a t-distribution, with N-1 degrees of 

freedom

➢ An example:

.025.0 level cesignifican at the

4.1ˆ  :

hypothesis Test the  .)23.0(ˆ and 35.1
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0

22

=

==

==

=







H

x

Nx



26

➢ Table of acceptance intervals for t-distribution

➢

accepted is 4.1ˆ Thus,

493.1ˆ207.1
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x

Degrees 
of 

Freedom

1-ρ 0.9 0.95 0.975 0.99

12 1.78 2.18 2.56 3.05

13 1.77 2.16 2.53 3.01

14 1.76 2.15 2.51 2.98

15 1.75 2.13 2.49 2.95

16 1.75 2.12 2.47 2.92

17 1.74 2.11 2.46 2.90

18 1.73 2.10 2.44 2.88
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❖ Application in Feature Selection

➢ The goal here is to test against zero the
difference μ1-μ2 of the respective means in
ω1, ω2 of a single feature.

➢ Let xi i=1,…,N , the values of a feature in ω1

➢ Let yi i=1,…,N , the values of the same feature in
ω2

➢ Assume in both classes

(unknown or not)

➢ The test becomes
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➢ Define

z=x-y

➢ Obviously

E[z]=μ1-μ2

➢ Define the average

➢ Known Variance Case:  Define

➢ This is N(0,1) and one follows the procedure as before.
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➢ Unknown Variance Case:
Define the test statistic

• q is t-distribution with 2N-2 degrees of freedom,

• Then apply appropriate tables as before.

➢ Example: The values of a feature in two classes are:

ω1:       3.5, 3.7, 3.9, 4.1, 3.4, 3.5, 4.1, 3.8, 3.6, 3.7

ω2:       3.2, 3.6, 3.1, 3.4, 3.0, 3.4, 2.8, 3.1, 3.3, 3.6

Test if the mean values in the two classes differ 
significantly, at the significance level ρ=0.05
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➢We have

For N=10

➢ From the table of the t-distribution with 2N-2=18
degrees of freedom and ρ=0.05, we obtain
D=[-2.10,2.10] and since q=4.25 is outside D, H1 is

accepted and the feature is selected.
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❖ Class Separability Measures

The emphasis so far was on individually considered features.
However, such an approach cannot take into account existing
correlations among the features. That is, two features may be
rich in information, but if they are highly correlated we need not
consider both of them. To this end, in order to search for
possible correlations, we consider features jointly as elements of
vectors. To this end:

➢ Discard poor in information features, by means of a statistical
test.

➢ Choose the maximum number, , of features to be used. This
is dictated by the specific problem (e.g., the number, N, of
available training patterns and the type of the classifier to be
adopted).
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➢ Combine remaining features to search for the “best”
combination. To this end:

• Use different feature combinations to form the feature
vector. Train the classifier, and choose the combination
resulting in the best classifier performance.

A major disadvantage of this approach is the high
complexity. Also, local minima, may give misleading
results.

• Adopt a class separability measure and choose the best
feature combination against this cost.
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➢ Class separability measures: Let be the current feature
combination vector.

• Divergence. To see the rationale behind this cost, consider
the two – class case. Obviously, if on the average the

value of is close to zero, then should be a

poor feature combination. Define:

–

–

–

d12 is known as the divergence and can be used as a

class separability measure.
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– For the multi-class case, define dij for every pair of
classes i, j and the average divergence is defined as

– Some properties:

– Large values of d are indicative of good feature

combination.
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➢ Scatter Matrices. These are used as a measure of the way
data are scattered in the respective feature space.

• Within-class scatter matrix

where

and

ni the number of training samples in i.

Trace {Sw} is a measure of the average variance of the

features, over all classes.
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• Between-class scatter matrix

Trace {Sb} is a measure of the average distance of the

mean of each class from the respective global one.

• Mixture scatter matrix

It turns out that:

Sm = Sw + Sb
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➢ Measures based on Scatter Matrices.

•

•

•

• Other criteria are also possible, by using various
combinations of Sm, Sb, Sw.

The above J1, J2, J3 criteria take high values for the cases

where:

• Data are clustered together within each class.

• The means of the various classes are far.

 
 w

m

S

S
J

Trace

Trace
1 =

mw

w

m
SS

S

S
J

1

2

−
==

 mw SSJ
1

3 Trace
−

=



42

• Fisher’s discriminant ratio. In one dimension and for two
equiprobable classes the determinants become:

and

known as Fischer’s ratio.
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❖ Ways to combine features:

Trying to form all possible combinations of features from an
original set of m selected features is a computationally hard task.

Thus, a number of suboptimal searching techniques have been
derived.

➢ Sequential backward selection. Let x1, x2, x3, x4 the available
features (m=4). The procedure consists of the following steps:

• Adopt a class separability criterion (could also be the error
rate of the respective classifier). Compute its value for ALL
features considered jointly [x1, x2, x3, x4]

T.

• Eliminate one feature and for each of the possible resulting
combinations, that is [x1, x2, x3]

T, [x1, x2, x4]
T, [x1, x3, x4]

T, [x2,

x3, x4]
T, compute the class reparability criterion value C.

Select the best combination, say [x1, x2, x3]
T.
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• From the above selected feature vector eliminate one 
feature and for each of the resulting combinations,           ,            
, compute and     select the best 
combination.

The above selection procedure shows how one can start from   
features and end up with the “best” ones. Obviously, the 
choice is suboptimal. The number of required calculations is:

In contrast, a full search requires:

operations.
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➢ Sequential forward selection. Here the reverse procedure is
followed.

• Compute C for each feature. Select the “best” one, say x1

• For all possible 2D combinations of x1, i.e., [x1, x2], [x1, x3],

[x1, x4] compute C and choose the best, say [x1, x3].

• For all possible 3D combinations of [x1, x3], e.g.,
[x1, x3, x2], etc., compute C and choose the best one.

The above procedure is repeated till the “best” vector with

features has been formed. This is also a suboptimal
technique, requiring:

operations.
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➢ Floating Search Methods

The above two procedures suffer from the nesting effect.
Once a bad choice has been done, there is no way to
reconsider it in the following steps.

In the floating search methods one is given the opportunity in
reconsidering a previously discarded feature or to discard a
feature that was previously chosen.

The method is still suboptimal, however it leads to improved
performance, at the expense of complexity.
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➢ Remarks:

• Besides suboptimal techniques, some optimal searching
techniques can also be used, provided that the optimizing
cost has certain properties, e.g., monotonic.

• Instead of using a class separability measure (filter
techniques) or using directly the classifier (wrapper
techniques), one can modify the cost function of the
classifier appropriately, so that to perform feature selection
and classifier design in a single step (embedded) method.

• For the choice of the separability measure a multiplicity of
costs have been proposed, including information theoretic
costs.
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LDA: Linear Discriminant Analysis
2 Classes 

2 Feature to 1 Feature
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